Wednesday, May 8, 2024
HomeNanotechnologySuperior drug supply and therapeutic methods for tuberculosis therapy | Journal of...

Superior drug supply and therapeutic methods for tuberculosis therapy | Journal of Nanobiotechnology


  • Zignol M, Gemert Wv, Falzon D, Sismanidis C, Glaziou P, Floyd Okay, Raviglione M. Surveillance of anti-tuberculosis drug resistance on this planet: an up to date evaluation, 2007–2010. Bull World Well being Organ. 2012;90:111–9.

    Article 
    PubMed 

    Google Scholar
     

  • Migliori GB, Raviglione MC. Important tuberculosis. Cham: Springer; 2021.

    E-book 

    Google Scholar
     

  • Shukla R, Sethi A, Handa M, Mohan M, Tripathi PK, Kesharwani P. Dendrimer-based drug supply methods for tuberculosis therapy. In: Kesharwani Prashant, editor. Nanotechnology based mostly approaches for tuberculosis therapy. Amsterdam: Elsevier; 2020.


    Google Scholar
     

  • Group WH: World tuberculosis report 2013: World Well being Group; 2013.

  • WHO G: World tuberculosis report 2020. Glob Tuberc Rep 2020.

  • Tuberculosis. https://www.who.int/news-room/fact-sheets/element/tuberculosis

  • Extra MP, Chitalkar RV, Bhadane MS, Dhole SD, Patil AG, Patil PO, Deshmukh PK. Improvement of graphene-drug nanoparticle based mostly supramolecular self assembled pH delicate hydrogel as potential provider for concentrating on MDR tuberculosis. Mater Technol. 2019;34(6):324–35.

    Article 
    CAS 

    Google Scholar
     

  • Sung N, Again S, Jung J, Kim Okay-H, Kim J-Okay, Lee JH, Ra Y, Yang HC, Lim C, Cho S. Inactivation of multidrug resistant (MDR)-and extensively drug resistant (XDR)-Mycobacterium tuberculosis by photodynamic remedy. Photodiagn Photodyn Ther. 2013;10(4):694–702.

    Article 
    CAS 

    Google Scholar
     

  • Costa A, Pinheiro M, Magalhães J, Ribeiro R, Seabra V, Reis S, Sarmento B. The formulation of nanomedicines for treating tuberculosis. Adv Drug Deliv Rev. 2016;102:102–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vinod V, Pushkaran AC, Kumar A, Mohan CG, Biswas R. 2021 Interplay mechanism of Mycobacterium tuberculosis GroEL2 protein with macrophage Lectin-like, oxidized low-density lipoprotein receptor-1: an built-in computational and experimental examine. Biochimica et Biophysica Acta Gen Subj. 1865;1:129758.


    Google Scholar
     

  • Krishnan N, Robertson BD, Thwaites G. The mechanisms and penalties of the extra-pulmonary dissemination of Mycobacterium tuberculosis. Tuberculosis. 2010;90(6):361–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sia IG, Wieland ML. Present ideas within the administration of tuberculosis. In: Beckman Thomas J, editor. Mayo clinic proceedings. Amsterdam: Elsevier; 2011.


    Google Scholar
     

  • Vinod V, Vijayrajratnam S, Vasudevan AK, Biswas R. The cell floor adhesins of Mycobacterium tuberculosis. Microbiol Res. 2020;232:126392.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirtane AR, Verma M, Karandikar P, Furin J, Langer R, Traverso G. Nanotechnology approaches for world infectious ailments. Nat Nanotechnol. 2021;16(4):369–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paulose RR, Kumar VA, Sharma A, Damle A, Saikumar D, Sudhakar A, Koshy AK, Venu RP. An outcome-based composite strategy for the analysis of intestinal tuberculosis: a pilot examine from a tertiary care centre in South India. J Royal Coll Phys Edinb. 2021;51(4):344–50.

    Article 

    Google Scholar
     

  • Saktiawati AM, Sturkenboom MG, Stienstra Y, Subronto YW, Kosterink JG, van der Werf TS, Alffenaar J-WC. Influence of meals on the pharmacokinetics of first-line anti-TB medicine in treatment-naive TB sufferers: a randomized cross-over trial. J Antimicrob Chemother. 2016;71(3):703–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prameswari A. The analysis of instantly noticed therapy short-course (DOTS) implementation for TB in hospital X. J Medicoeticolegal dan Manaj Rumah Sakit. 2018;7(2):93–101. https://doi.org/10.18196/jmmr.7261.

    Article 

    Google Scholar
     

  • Pal S, Soni V, Kumar S, Jha SK, Medatwal N, Rana Okay, Yadav P, Mehta D, Jain D, Sharma P. A hydrogel-based implantable multidrug antitubercular formulation outperforms oral supply. Nanoscale. 2021;13(31):13225–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Connolly LE, Edelstein PH, Ramakrishnan L. Why is long-term remedy required to treatment tuberculosis? PLoS Med. 2007;4(3):e120. https://doi.org/10.1371/journal.pmed.0040120.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gygli SM, Borrell S, Trauner A, Gagneux S. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary views. FEMS Microbiol Rev. 2017;41(3):354–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seung KJ, Keshavjee S, Wealthy ML. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Chilly Spring Harbor Perspect Med. 2015. https://doi.org/10.1101/cshperspect.a017863.

    Article 

    Google Scholar
     

  • Hickey A, Durham P, Dharmadhikari A, Nardell E. Inhaled drug therapy for tuberculosis: previous progress and future prospects. J Management Launch. 2016;240:127–34. https://doi.org/10.1016/j.jconrel.2015.11.018.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Braunstein M, Hickey AJ, Ekins S. Why wait? The case for treating tuberculosis with inhaled medicine. Pharm Res. 2019;36(12):1–6.

    Article 

    Google Scholar
     

  • Group WH. Latent tuberculosis an infection: up to date and consolidated tips for programmatic administration. Geneva: World Well being Group; 2018.


    Google Scholar
     

  • Brhane Y, Gabriel T, Adane T, Negash Y, Mulugeta H, Ayele M. Current developments and novel drug supply methods for the therapy of tuberculosis. Int J Pharm Sci Nanotechnol. 2019;12(3):4524–30.

    CAS 

    Google Scholar
     

  • Cohen J: Approval of novel TB drug celebrated—with restraint. In: American Affiliation for the Development of Science; 2013.

  • Liu Y, Matsumoto M, Ishida H, Ohguro Okay, Yoshitake M, Gupta R, Geiter L, Hafkin J. Delamanid: from discovery to its use for pulmonary multidrug-resistant tuberculosis (MDR-TB). Tuberculosis. 2018;111:20–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keam SJ. Pretomanid: first approval. Medication. 2019;79(16):1797–803.

    Article 
    PubMed 

    Google Scholar
     

  • Kaur Okay, Gupta A, Narang R, Murthy R. Novel drug supply methods: desired feat for tuberculosis. J Adv Pharm Technol Res. 2010;1(2):145.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gairola A, Benjamin A, Weatherston JD, Cirillo JD, Wu HJ. Current developments in drug supply for therapy of tuberculosis by concentrating on macrophages. Adv Ther. 2022. https://doi.org/10.1002/adtp.202100193.

    Article 

    Google Scholar
     

  • Borah Slater Okay, Kim D, Chand P, Xu Y, Shaikh H, Undale V. A present perspective on the potential of nanomedicine for anti-tuberculosis remedy. Trop Med Infect Dis. 2023;8(2):100.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shirsath NR, Goswami AK. Nanocarriers based mostly novel drug supply as efficient drug supply: a overview. Curr Nanomater. 2019;4(2):71–83.

    Article 
    CAS 

    Google Scholar
     

  • Dhanjal DS, Mehta M, Chopra C, Singh R, Sharma P, Chellappan DK, Tambuwala MM, Bakshi HA, Aljabali AA, Gupta G. Novel managed launch pulmonary drug supply methods: present updates and challenges. In: Azar Ahmad Taher, editor. Modeling and management of drug supply methods. Amsterdam: Elsevier; 2021.


    Google Scholar
     

  • Gopalaswamy R, Shanmugam S, Mondal R, Subbian S. Of tuberculosis and non-tuberculous mycobacterial infections–a comparative evaluation of epidemiology, analysis and therapy. J Biomed Sci. 2020;27(1):1–17.

    Article 

    Google Scholar
     

  • Suresh P, Kumar A, Biswas R, Vijayakumar D, Thulasidharan S, Anjaneyan G, Kunoor A, Biswas L. Epidemiology of nontuberculous mycobacterial an infection in tuberculosis suspects. Am J Trop Med Hyg. 2021. https://doi.org/10.4269/ajtmh.21-0095.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh C, Koduri L, Bhatt TD, Jhamb SS, Mishra V, Gill MS, Suresh S. In vitro-in vivo analysis of novel co-spray dried rifampicin phospholipid lipospheres for oral supply. AAPS PharmSciTech. 2017;18(1):138–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Denti P, Jeremiah Okay, Chigutsa E, Faurholt-Jepsen D, PrayGod G, Vary N, Castel S, Wiesner L, Hagen CM, Christiansen M. Pharmacokinetics of isoniazid, pyrazinamide, and ethambutol in newly identified pulmonary TB sufferers in Tanzania. PLoS ONE. 2015;10(10):e0141002.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saifullah B, Chrzastek A, Maitra A, Naeemullah B, Fakurazi S, Bhakta S, Hussein MZ. Novel anti-tuberculosis nanodelivery formulation of ethambutol with graphene oxide. Molecules. 2017;22(10):1560.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang M, Sala C, Hartkoorn RC, Dhar N, Mendoza-Losana A, Cole ST. Streptomycin-starved Mycobacterium tuberculosis 18b, a drug discovery instrument for latent tuberculosis. Antimicrob Brokers Chemother. 2012;56(11):5782–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pijck J, Hallynck T, Soep H, Baert L, Daneels R, Boelaert J. Pharmacokinetics of amikacin in sufferers with renal insufficiency: relation of half-life and creatinine clearance. J Infect Dis. 1976;134(Supplement_2):S331–41. https://doi.org/10.1093/infdis/135.Supplement_2.S331.

    Article 
    PubMed 

    Google Scholar
     

  • Bunn PA. Kanamycin. Med Clin North Amer. 1970;54(5):1245–56. https://doi.org/10.1016/S0025-7125(16)32590-1.

    Article 
    CAS 

    Google Scholar
     

  • Stein GE, LeBel M, Flor SC, Zinny M. Bioavailability and pharmacokinetics of oral ofloxacin formulations in regular topics. Present Med Analysis Opinion. 1991;12(8):479–84. https://doi.org/10.1185/03007999109111658.

    Article 
    CAS 

    Google Scholar
     

  • Fish DN, Chow AT. The scientific pharmacokinetics of levofloxacin. Clin Pharmacokin. 1997;32:101–19. https://doi.org/10.2165/00003088-199732020-00002.

    Article 
    CAS 

    Google Scholar
     

  • Naidoo A, Naidoo Okay, McIlleron H, Essack S, Padayatchi N. A overview of moxifloxacin for the therapy of drug-susceptible tuberculosis. J Clin Pharmacol. 2017;57(11):1369–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Begg EJ, Robson RA, Saunders DA, Graham GG, Buttimore RC, Neill AM, City GI. The pharmacokinetics of oral fleroxacin and ciprofloxacin in plasma and sputum throughout acute and persistent dosing. British J Clin Pharmacol. 2000;49(1):32–8. https://doi.org/10.1046/j.1365-2125.2000.00105.x.

    Article 
    CAS 

    Google Scholar
     

  • Drusano GL, Standiford HC, Plaisance Okay, Forrest A, Leslie J, Caldwell J. Absolute oral bioavailability of ciprofloxacin. Antimicro Brokers Chemo. 1986;30(3):444–6. https://doi.org/10.1128/aac.30.3.444.

    Article 
    CAS 

    Google Scholar
     

  • Traunmüller F, Zeitlinger M, Zeleny P, Müller M, Joukhadar C. Pharmacokinetics of single-and multiple-dose oral clarithromycin in smooth tissues decided by microdialysis. Antimicro Brokers Chemo. 2007;51(9):3185–9. https://doi.org/10.1128/aac.00532-07.

    Article 

    Google Scholar
     

  • Patel DS, Sharma N, Patel MC, Patel BN, Shrivastav PS, Sanyal M. Improvement and validation of a selective and delicate LC–MS/MS methodology for willpower of cycloserine in human plasma: utility to bioequivalence examine. J Chrom B. 2011;879(23):2265–73. https://doi.org/10.1016/j.jchromb.2011.06.011.

    Article 
    CAS 

    Google Scholar
     

  • Peloquin CA, Henshaw TL, Huitt GA, Berning SE, Nitta AT, James GT. Pharmacokinetic analysis of para-aminosalicylic acid granules. Pharmaco J Human Pharmacol Drug Remedy. 1994;14(1):40–6. https://doi.org/10.1002/j.1875-9114.1994.tb02787.x.

    Article 
    CAS 

    Google Scholar
     

  • Abdelwahab MT, Wasserman S, Brust JC, Gandhi NR, Meintjes G, Everitt D, Diacon A, Dawson R, Wiesner L, Svensson EM, Maartens G. Clofazimine pharmacokinetics in sufferers with TB: dosing implications. J Antimicro Chemo. 2020;75(11):3269–77. https://doi.org/10.1093/jac/dkaa310.

    Article 
    CAS 

    Google Scholar
     

  • Dharmadhikari AS, Kabadi M, Gerety B, Hickey AJ, Fourie PB, Nardell E. Part I, single-dose, dose-escalating examine of inhaled dry powder capreomycin: a brand new strategy to remedy of drug-resistant tuberculosis. Antimicrobial brokers and chemotherapy. 2013;57(6):2613–9. https://doi.org/10.1128/aac.02346-12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmad M, Madni AU, Usman M. In-vitro launch and pharmacokinetics of anti-tubercle drug ethionamide in wholesome male topics. J Bioanal Biomed. 2009;1:046–9. https://doi.org/10.4172/1948-593X.1000010.

    Article 
    CAS 

    Google Scholar
     

  • Venkatesan Okay. Medical pharmacokinetic concerns within the therapy of sufferers with leprosy. Clin Pharmaco. 1989;16:365–86. https://doi.org/10.2165/00003088-198916060-00003.

    Article 
    CAS 

    Google Scholar
     

  • Yun HY, Chang MJ, Jung H, Chang V, Wang Q, Strydom N, Yoon YR, Savic RM. Prothionamide dose optimization utilizing inhabitants pharmacokinetics for multidrug-resistant tuberculosis sufferers. Antimicro Brokers Chemo. 2022;66(9):e01893–21. https://doi.org/10.1128/aac.01893-21.

    Article 
    CAS 

    Google Scholar
     

  • Holdiness MR. Medical pharmacokinetics of the antituberculosis medicine. Clin Pharmaco. 1984;9:511–44. https://doi.org/10.2165/00003088-198409060-00003.

    Article 
    CAS 

    Google Scholar
     

  • Zitkova L, Tousek J. Pharmacokinetics of cycloserine and terizidone. Chemotherapy. 1974;20(18):28. https://doi.org/10.1159/000221787.

    Article 

    Google Scholar
     

  • Skinner MH, Hsieh M, Torseth J, Pauloin D, Bhatia GU, Harkonen S, Merigan TC, Blaschke TF. Pharmacokinetics of rifabutin. Antimicro Brokers Chemo. 1989;8:1237–41. https://doi.org/10.1128/aac.33.8.1237.

    Article 

    Google Scholar
     

  • Stalker DJ, Jungbluth GL. Medical pharmacokinetics of linezolid, a novel oxazolidinone antibacterial. Clin Pharmaco. 2003;42:1129–40. https://doi.org/10.2165/00003088-200342130-00004.

    Article 
    CAS 

    Google Scholar
     

  • Chahine EB, Karaoui LR, Mansour H. Bedaquiline: a novel diarylquinoline for multidrug-resistant tuberculosis. Annals Pharmaco. 2014;48(1):107–15. https://doi.org/10.1177/1060028013504087.

    Article 
    CAS 

    Google Scholar
     

  • Salinger DH, Subramoney V, Everitt D, Nedelman JR. Inhabitants pharmacokinetics of the antituberculosis agent pretomanid. Antimicro Brokers Chemo. 2019;63(10):e00907–19. https://doi.org/10.1128/aac.00907-19.

    Article 
    CAS 

    Google Scholar
     

  • Biswas B, Misra TK, Ray D, Majumder T, Bandyopadhyay TK, Bhowmick TK. Present therapeutic supply approaches utilizing nanocarriers for the therapy of tuberculosis illness. Int J Pharm. 2023. https://doi.org/10.1016/j.ijpharm.2023.123018.

    Article 
    PubMed 

    Google Scholar
     

  • Langer R. Drug supply and concentrating on. Nature. 1998;392(6679 Suppl):5–10.

    CAS 
    PubMed 

    Google Scholar
     

  • Mosaiab T, Farr DC, Kiefel MJ, Houston TA. Carbohydrate-based nanocarriers and their utility to focus on macrophages and ship antimicrobial brokers. Adv Drug Deliv Rev. 2019;151:94–129.

    Article 
    PubMed 

    Google Scholar
     

  • Afinjuomo F, Abdella S, Youssef SH, Tune Y, Garg S. Inulin and its utility in drug supply. Prescription drugs. 2021;14(9):855.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Putri KSS, Ramadhani LS, Rachel T, Suhariyono G, Surini S. Promising chitosan-alginate mixture for rifampicin dry powder inhaler to focus on lively and latent tuberculosis. J Appl Pharm Sci. 2022;12(5):098–103.

    CAS 

    Google Scholar
     

  • Longuinho MM, Leitão SG, Silva RS, Silva PE, Rossi AL, Finotelli PV. Lapazine loaded alginate/chitosan microparticles: enhancement of anti-mycobacterium exercise. J Drug Deliv Sci Technol. 2019;54:101292.

    Article 
    CAS 

    Google Scholar
     

  • Wolfram J, Zhu M, Yang Y, Shen J, Gentile E, Paolino D, Fresta M, Nie G, Chen C, Shen H. Security of nanoparticles in medication. Curr Drug Targets. 2015;16(14):1671–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khairnar SV, Pagare P, Thakre A, Nambiar AR, Junnuthula V, Abraham MC, Kolimi P, Nyavanandi D, Dyawanapelly S. Assessment on the scale-up strategies for the preparation of strong lipid nanoparticles. Pharmaceutics. 2022;14(9):1886.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Junnuthula V, Kolimi P, Nyavanandi D, Sampathi S, Vora LK, Dyawanapelly S. Polymeric micelles for breast most cancers remedy: latest updates, scientific translation and regulatory concerns. Pharmaceutics. 2022;14(9):1860.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sundar S, Chakravarty J. Liposomal amphotericin B and leishmaniasis: dose and response. J World Infect Dis. 2010;2(2):159.

    Article 

    Google Scholar
     

  • Mitchell SL, Carlson EE. Tiny issues with huge affect: nanotechnology within the combat towards infectious illness. ACS Infect Dis. 2018;4(10):1432–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desai N. Challenges in growth of nanoparticle-based therapeutics. AAPS J. 2012;14(2):282–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ioannidis J, Kim B, Trounson A. Learn how to design preclinical research in nanomedicine and cell remedy to maximise the prospects of scientific translation. Nat Biomed Eng. 2018;2(11):797–809.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chimote G, Banerjee R. In vitro analysis of inhalable isoniazid-loaded surfactant liposomes as an adjunct remedy in pulmonary tuberculosis. J Biomed Mater Res B Appl Biomater. 2010;94(1):1–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karki R, Mamatha G, Subramanya G, Udupa N. Preparation, characterization and tissue disposition of niosomes containing isoniazid. Rasayan J Chem. 2008;1(2):224–7.

    CAS 

    Google Scholar
     

  • Singh G, Dwivedi H, Saraf SK, Saraf SA. Niosomal supply of isoniazid-development and characterization. Trop J Pharm Res. 2011. https://doi.org/10.4314/tjpr.v10i2.66564.

    Article 

    Google Scholar
     

  • Vatanparast M, Shariatinia Z. Computational research on the doped graphene quantum dots as potential carriers in drug supply methods for isoniazid drug. Struct Chem. 2018;29(5):1427–48.

    Article 
    CAS 

    Google Scholar
     

  • Chen G, Wu Y, Yu D, Li R, Luo W, Ma G, Zhang C. Isoniazid-loaded chitosan/carbon nanotubes microspheres promote secondary wound therapeutic of bone tuberculosis. J Biomater Appl. 2019;33(7):989–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zomorodbakhsh S, Abbasian Y, Naghinejad M, Sheikhpour M. The results examine of isoniazid conjugated multi-wall carbon nanotubes nanofluid on Mycobacterium tuberculosis. Int J Nanomed. 2020;15:5901.

    Article 
    CAS 

    Google Scholar
     

  • Fernández-Paz C, Fernández-Paz E, Salcedo-Abraira P, Rojas S, Barrios-Esteban S, Csaba N, Horcajada P, Remuñán-López C. Microencapsulated isoniazid-loaded metal-organic frameworks for pulmonary administration of antituberculosis medicine. Molecules. 2021;26(21):6408.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anjani QK, Permana AD, Cárcamo-Martínez Á, Domínguez-Robles J, Tekko IA, Larrañeta E, Vora LK, Ramadon D, Donnelly RF. Versatility of hydrogel-forming microneedles in in vitro transdermal supply of tuberculosis medicine. Eur J Pharm Biopharm. 2021;158:294–312.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Telange DR, Pandharinath RR, Pethe AM, Jain SP, Pingale PL. Calcium ion-sodium alginate-piperine-based microspheres: proof of enhanced encapsulation effectivity, bio-adhesion, managed supply, and oral bioavailability of isoniazid. AAPS PharmSciTech. 2022;23(4):1–18.

    Article 

    Google Scholar
     

  • Jain C, Vyas S. Preparation and characterization of niosomes containing rifampicin for lung concentrating on. J Microencapsul. 1995;12(4):401–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jain C, Vyas S, Dixit V. Niosomal system for supply of rifampicin to lymphatics. Indian J Pharm Sci. 2006. https://doi.org/10.4103/0250-474X.29622.

    Article 

    Google Scholar
     

  • Kumar PV, Asthana A, Dutta T, Jain NK. Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J Drug Goal. 2006;14(8):546–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takenaga M, Ohta Y, Tokura Y, Hamaguchi A, Igarashi R, Disratthakit A, Doi N. Lipid microsphere formulation containing rifampicin targets alveolar macrophages. Drug Deliv. 2008;15(3):169–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patil JS, Devi VK, Devi Okay, Sarasija S. A novel strategy for lung supply of rifampicin-loaded liposomes in dry powder type for the therapy of tuberculosis. Lung India. 2015;32(4):331.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bellini RG, Guimarães AP, Pacheco MA, Dias DM, Furtado VR, de Alencastro RB, Horta BA. Affiliation of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. J Mol Graph Mannequin. 2015;60:34–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parmar R, Misra R, Mohanty S. In vitro managed launch of Rifampicin by means of liquid-crystalline folate nanoparticles. Colloids Surf, B. 2015;129:198–205.

    Article 
    CAS 

    Google Scholar
     

  • Rajabnezhad S, Casettari L, Lam JK, Nomani A, Torkamani MR, Palmieri GF, Rajabnejad MR, Darbandi MA. Pulmonary supply of rifampicin microspheres utilizing decrease technology polyamidoamine dendrimers as a provider. Powder Technol. 2016;291:366–74.

    Article 
    CAS 

    Google Scholar
     

  • Tran N, Hocquet M, Eon B, Sangwan P, Ratcliffe J, Hinton TM, White J, Ozcelik B, Reynolds NP, Muir BW. Non-lamellar lyotropic liquid crystalline nanoparticles improve the antibacterial results of rifampicin towards Staphylococcus aureus. J Colloid Interface Sci. 2018;519:107–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ola M, Bhaskar R, Patil GR. Liquid crystalline drug supply system for sustained launch loaded with an antitubercular drug. J Drug Deliv Ther. 2018;8(4):93–101.


    Google Scholar
     

  • Thomas D, Latha M, Thomas KK. Synthesis and in vitro analysis of alginate-cellulose nanocrystal hybrid nanoparticles for the managed oral supply of rifampicin. J Drug Deliv Sci Technol. 2018;46:392–9.

    Article 
    CAS 

    Google Scholar
     

  • Tripodo G, Perteghella S, Grisoli P, Trapani A, Torre ML, Mandracchia D. Drug supply of rifampicin by pure micelles based mostly on inulin: physicochemical properties, antibacterial exercise and human macrophages uptake. Eur J Pharm Biopharm. 2019;136:250–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suárez-González J, Santoveña-Estévez A, Soriano M, Fariña JB. Design and optimization of a child-friendly dispersible pill containing isoniazid, pyrazinamide, and rifampicin for treating tuberculosis in pediatrics. Drug Develop Indus Pharm. 2020;46(2):309–17. https://doi.org/10.1080/03639045.2020.1717516.

  • Grotz E, Tateosian NL, Salgueiro J, Bernabeu E, Gonzalez L, Manca ML, Amiano N, Valenti D, Manconi M, García V. Pulmonary supply of rifampicin-loaded soluplus micelles towards Mycobacterium tuberculosis. J Drug Deliv Sci Technol. 2019;53:101170.

    Article 
    CAS 

    Google Scholar
     

  • Pi J, Shen L, Shen H, Yang E, Wang W, Wang R, Huang D, Lee B-S, Hu C, Chen C. Mannosylated graphene oxide as macrophage-targeted supply system for enhanced intracellular M. tuberculosis killing effectivity. Mater Sci Eng C. 2019;103:109777.

    Article 
    CAS 

    Google Scholar
     

  • Henostroza MAB, Melo KJC, Yukuyama MN, Löbenberg R, Bou-Chacra NA. Cationic rifampicin nanoemulsion for the therapy of ocular tuberculosis. Colloids Surf A. 2020;597:124755.

    Article 

    Google Scholar
     

  • El-Ridy MS, Yehia SA, Kassem MA-E-M, Mostafa DM, Nasr EA, Asfour MH. Niosomal encapsulation of ethambutol hydrochloride for growing its efficacy and security. Drug Deliv. 2015;22(1):21–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nemati E, Mokhtarzadeh A, Panahi-Azar V, Mohammadi A, Hamishehkar H, Mesgari-Abbasi M, Ezzati Nazhad Dolatabadi J, de la Guardia M. Ethambutol-loaded strong lipid nanoparticles as dry powder inhalable formulation for tuberculosis remedy. AAPS PharmSciTech. 2019;20(3):1–9.

    Article 

    Google Scholar
     

  • Vladimirsky M, Ladigina G. Antibacterial exercise of liposome-entrapped streptomycin in mice contaminated with Mycobacterium tuberculosis. Biomed Pharmacotherap. 1982;36(8–9):375–7.

    CAS 

    Google Scholar
     

  • Cynamon MH, Swenson CE, Palmer GS, Ginsberg RS. Liposome-encapsulated-amikacin remedy of Mycobacterium avium advanced an infection in beige mice. Antimicrob Brokers Chemother. 1989;33(8):1179–83. https://doi.org/10.1128/aac.33.8.1179.

  • Gaidukevich S, Mikulovich YL, Smirnova T, Andreevskaya S, Sorokoumova G, Chernousova L, Selishcheva A, Shvets V. Antibacterial results of liposomes containing phospholipid cardiolipin and fluoroquinolone levofloxacin on Mycobacterium tuberculosis with intensive drug resistance. Bull Exp Biol Med. 2016;160(5):675–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaspar M, Cruz A, Penha A, Reymão J, Sousa A, Eleutério C, Domingues S, Fraga A, Longatto Filho A, Cruz M. Rifabutin encapsulated in liposomes displays elevated therapeutic exercise in a mannequin of disseminated tuberculosis. Int J Antimicrob Brokers. 2008;31(1):37–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaspar MM, Neves S, Portaels F, Pedrosa J, Silva MT, Cruz MEM. Therapeutic efficacy of liposomal rifabutin in a Mycobacterium avium mannequin of an infection. Antimicrob Brokers Chemother. 2000;44(9):2424–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandler ED, Ng V, Hadley W. Clofazimine crystals in alveolar macrophages from a affected person with the acquired immunodeficiency syndrome. Arch Pathol Lab Med. 1992;116(5):541–3.

    CAS 
    PubMed 

    Google Scholar
     

  • Mehta RT. Liposome encapsulation of clofazimine reduces toxicity in vitro and in vivo and improves therapeutic efficacy within the beige mouse mannequin of disseminated Mycobacterium avium-M. intracellulare advanced an infection. Antimicrob Brokers Chemother. 1996;40(8):1893–902.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kansal RG, Gomez-Flores R, Sinha I, Mehta RT. Therapeutic efficacy of liposomal clofazimine towards Mycobacterium avium advanced in mice is determined by measurement of preliminary inoculum and period of an infection. Antimicrob Brokers Chemother. 1997;41(1):17–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams LB, Sinha I, Franzblau SG, Krahenbuhl JL, Mehta RT. Efficient therapy of acute and persistent murine tuberculosis with liposome-encapsulated clofazimine. Antimicrob Brokers Chemother. 1999;43(7):1638–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Castro RR, Todaro V, da Silva LCRP, Simon A, do Carmo FA, de Sousa VP, Rodrigues CR, Sarmento B, Healy AM, Cabral LM. Improvement of inhaled formulation of modified clofazimine as an alternative choice to therapy of tuberculosis. J Drug Deliv Sci Technol. 2020;58:101805.

    Article 

    Google Scholar
     

  • Kisich Okay, Gelperina S, Higgins M, Wilson S, Shipulo E, Oganesyan E, Heifets L. Encapsulation of moxifloxacin inside poly (butyl cyanoacrylate) nanoparticles enhances efficacy towards intracellular Mycobacterium tuberculosis. Int J Pharm. 2007;345(1–2):154–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Costa-Gouveia J, Pancani E, Jouny S, Machelart A, Delorme V, Salzano G, Iantomasi R, Piveteau C, Queval CJ, Tune O-R. Mixture remedy for tuberculosis therapy: pulmonary administration of ethionamide and booster co-loaded nanoparticles. Sci Rep. 2017;7(1):1–14.

    Article 
    CAS 

    Google Scholar
     

  • Garcia-Contreras L, Padilla-Carlin DJ, Sung J, VerBerkmoes J, Muttil P, Elbert Okay, Peloquin C, Edwards D, Hickey A. Pharmacokinetics of ethionamide delivered in spray-dried microparticles to the lungs of guinea pigs. J Pharm Sci. 2017;106(1):331–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Maio F, Palmieri V, Santarelli G, Perini G, Salustri A, Palucci I, Sali M, Gervasoni J, Primiano A, Ciasca G. Graphene oxide-linezolid mixture as potential new anti-tuberculosis therapy. Nanomaterials. 2020;10(8):1431.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sercombe L, Veerati T, Moheimani F, Wu S, Sood A, Hua S. 2015 Advances and challenges of liposome assisted drug supply. Entrance Pharmacol. 2015;6:286.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orozco LC, Quintana FO, Beltrán RM, de Moreno I, Wasserman M, Rodriguez G. Using rifampicin and isoniazid entrapped in liposomes for the therapy of murine tuberculosis. Tubercle. 1986;67(2):91–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhardwaj A, Kumar L, Narang RK, Murthy RS. Improvement and characterization of ligand-appended liposomes for a number of drug remedy for pulmonary tuberculosis. Synthetic cells, nanomedicine, and biotechnology. 2013;41(1):52–59. https://doi.org/10.3109/10731199.2012.702316.

  • Liu P, Guo B, Wang S, Ding J, Zhou W. A thermo-responsive and self-healing liposome-in-hydrogel system as an antitubercular drug provider for localized bone tuberculosis remedy. Int J Pharm. 2019;558:101–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhardwaj A, Grobler A, Rath G, Kumar Goyal A, Kumar Jain A, Mehta A. Pulmonary supply of anti-tubercular medicine utilizing ligand anchored pH delicate liposomes for the therapy of pulmonary tuberculosis. Curr Drug Deliv. 2016;13(6):909–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greco E, Quintiliani G, Santucci MB, Serafino A, Ciccaglione AR, Marcantonio C, Papi M, Maulucci G, Delogu G, Martino A. Janus-faced liposomes improve antimicrobial innate immune response in Mycobacterium tuberculosis an infection. Proc Natl Acad Sci. 2012;109(21):E1360–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miretti M, Juri L, Cosiansi MC, Tempesti TC, Baumgartner MT. Antimicrobial results of ZnPc delivered into liposomes on multidrug resistant (MDR)-mycobacterium tuberculosis. ChemistrySelect. 2019;4(33):9726–30.

    Article 
    CAS 

    Google Scholar
     

  • Rosada RS, Silva CL, Santana MHA, Nakaie CR, de la Torre LG. Effectiveness, towards tuberculosis, of pseudo-ternary complexes: peptide-DNA-cationic liposome. J Colloid Interface Sci. 2012;373(1):102–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bekraki AI. Liposomes-and niosomes-based drug supply methods for tuberculosis therapy. In: Kesharwani Prashant, editor. Nanotechnology based mostly approaches for tuberculosis therapy. Amsterdam: Elsevier; 2020.


    Google Scholar
     

  • Patil Okay, Bagade S, Bonde S, Sharma S, Saraogi G. Current therapeutic approaches for the administration of tuberculosis: challenges and alternatives. Biomed Pharmacother. 2018;99:735–45. https://doi.org/10.1016/j.biopha.2018.01.115.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaur IP, Singh H. Nanostructured drug supply for higher administration of tuberculosis. J Management Launch. 2014;184:36–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bibhas C, Narahari N. Exploring using lipid based mostly nano-formulations for the administration of tuberculosis. J Nanosci Curr Res. 2017;2(112):2572–813.


    Google Scholar
     

  • Bibhas C, Subas C, Gitanjali M, Narahari N. Exploring using lipid based mostly nano-formulations for the administration of tuberculosis. J Nanosci Curr Res. 2017;2(112):2572–813.


    Google Scholar
     

  • Hanieh PN, Consalvi S, Forte J, Cabiddu G, De Logu A, Poce G, Rinaldi F, Biava M, Carafa M, Marianecci C. Nano-based drug supply methods of potent MmpL3 inhibitors for tuberculosis therapy. Pharmaceutics. 2022;14(3):610.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sadhu PK, Saisivam S, Debnath SK. Design and characterization of niosomes of ethionamide for multi drug resistance tuberculosis. 2019.

  • Kulkarni P, Rawtani D, Barot T. Formulation and optimization of lengthy performing twin niosomes utilizing box-Behnken experimental design methodology for combinative supply of ethionamide and D-cycloserine in tuberculosis therapy. Colloids Surf A. 2019;565:131–42.

    Article 
    CAS 

    Google Scholar
     

  • Hussain A, Singh S, Das SS, Anjireddy Okay, Karpagam S, Shakeel F. Nanomedicines as drug supply carriers of anti-tubercular medicine: from pathogenesis to an infection management. Curr Drug Deliv. 2019;16(5):400–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Zyl L, Viljoen JM, Haynes RK, Aucamp M, Ngwane AH, du Plessis J. Topical supply of artemisone, clofazimine and decoquinate encapsulated in vesicles and their in vitro efficacy towards Mycobacterium tuberculosis. AAPS PharmSciTech. 2019;20(1):1–11.


    Google Scholar
     

  • Eldehna WM, El Hassab MA, Abdelshafi NA, Sayed FA-Z, Fares M, Al-Rashood ST, Elsayed ZM, Abdel-Aziz MM, Elkaeed EB, Elsabahy M. Improvement of potent nanosized isatin-isonicotinohydrazide hybrid for administration of Mycobacterium tuberculosis. Int J Pharm. 2022;612:121369.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emami F, Vatanara A, Park EJ, Na DH. Drying applied sciences for the steadiness and bioavailability of biopharmaceuticals. Pharmaceutics. 2018;10(3):131.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marzaman AN, Roska TP, Sartini S, Utami RN, Sulistiawati S, Enggi CK, Manggau MA, Rahman L, Shastri VP, Permana AD. Current advances in pharmaceutical approaches of antimicrobial brokers for selective supply in numerous administration routes. Antibiotics. 2023;12(5):822. https://doi.org/10.3390/antibiotics12050822.

  • Dua Okay, Rapalli VK, Shukla SD, Singhvi G, Shastri MD, Chellappan DK, Satija S, Mehta M, Gulati M, Pinto TDJA. Multi-drug resistant Mycobacterium tuberculosis & oxidative stress complexity: rising want for novel drug supply approaches. Biomed Pharmacother. 2018;107:1218–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim SY, Park MS, Kim YS, Kim SK, Chang J, Lee HJ, Cho SN, Kang YA. The responses of a number of cytokines following incubation of entire blood from TB sufferers, latently contaminated people and controls with the TB antigens ESAT‐6, CFP‐10 and TB 7.7. Scand J Immunol. 2012;76(6):580–86. https://doi.org/10.1111/j.1365-3083.2012.02776.x.

  • Patil SM, Sawant SS, Kunda NK. Inhalable bedaquiline-loaded cubosomes for the therapy of non-small cell lung most cancers (NSCLC). Int J Pharm. 2021;607:121046.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anjani QK, Domínguez-Robles J, Utomo E, Font M, Martínez-Ohárriz MC, Permana AD, Cárcamo-Martínez Á, Larrañeta E, Donnelly RF. Inclusion complexes of rifampicin with native and derivatized cyclodextrins: in silico modeling, formulation, and characterization. Prescription drugs. 2021;15(1):20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amarnath Praphakar R, Sam Ebenezer R, Vignesh S, Shakila H, Rajan M. Versatile pH-responsive chitosan-g-polycaprolactone/maleic anhydride–isoniazid polymeric micelle to enhance the bioavailability of tuberculosis multidrugs. ACS Appl Bio Mater. 2019;2(5):1931–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaur J, Mishra V, Singh SK, Gulati M, Kapoor B, Chellappan DK, Gupta G, Dureja H, Anand Okay, Dua Okay. Harnessing amphiphilic polymeric micelles for diagnostic and therapeutic purposes: breakthroughs and bottlenecks. J Management Launch. 2021;334:64–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan X, Praphakar RA, Munusamy MA, Alarfaj AA, Kumar SS, Rajan M. Mucoadhesive guargum hydrogel inter-connected chitosan-g-polycaprolactone micelles for rifampicin supply. Carbohyd Polym. 2019;206:1–10.

    Article 
    CAS 

    Google Scholar
     

  • Sheth U, Tiwari S, Bahadur A. Preparation and characterization of anti-tubercular medicine encapsulated in polymer micelles. J Drug Deliv Sci Technol. 2018;48:422–8.

    Article 
    CAS 

    Google Scholar
     

  • Garg NK, Dwivedi P, Jain A, Tyagi S, Sahu T, Tyagi RK. Improvement of novel provider (s) mediated tuberculosis vaccine: greater than a tour de pressure. Eur J Pharm Sci. 2014;62:227–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an summary of biomedical purposes. J Management Launch. 2012;161(2):505–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu X, Cheng Q, He P, Zhang Y, Jiang Z, Zeng Y. Dihydroartemisinin-loaded chitosan nanoparticles inhibit the rifampicin-resistant mycobacterium tuberculosis by disrupting the cell wall. Entrance Microbiol. 2021. https://doi.org/10.3389/fmicb.2021.735166/full.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdallah HM, Elella MHA, Abdel-Aziz MM. One-pot inexperienced synthesis of chitosan biguanidine nanoparticles for concentrating on M. tuberculosis. Int J Biol Macromol. 2023;232:123394.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anisimova YV, Gelperina SI, Peloquin CA, Heifets LB. Nanoparticles as antituberculosis medicine carriers: impact on exercise towards Mycobacterium tuberculosis in human monocyte-derived macrophages. J Nanopart Res. 2000;2:165–71. https://doi.org/10.1023/A:1010061013365.

  • Scolari IR, Páez PL, Sánchez-Borzone ME, Granero GE. Promising chitosan-coated alginate-tween 80 nanoparticles as rifampicin coadministered ascorbic acid supply provider towards Mycobacterium tuberculosis. AAPS PharmSciTech. 2019;20(2):1–21.

    Article 

    Google Scholar
     

  • Nagpal PS, Kesarwani A, Sahu P, Upadhyay P. Aerosol immunization by alginate coated mycobacterium (BCG/MIP) particles present enhanced immune response and protecting efficacy than aerosol of plain mycobacterium towards M. tb. H37Rv an infection in mice. BMC Infect Dis. 2019;19(1):1–14.

    Article 
    CAS 

    Google Scholar
     

  • Kesarwani A, Sahu P, Jain Okay, Sinha P, Mohan KV, Nagpal PS, Singh S, Zaidi R, Nagarajan P, Upadhyay P. The protection and efficacy of BCG encapsulated alginate particle (BEAP) towards M. tb H37Rv an infection in macaca mulatta: a pilot examine. Sci Rep. 2021;11(1):1–10.

    Article 

    Google Scholar
     

  • Najafi A, Ghazvini Okay, Sankian M, Gholami L, Amini Y, Zare S, Khademi F, Tafaghodi M. T helper kind 1 biased immune responses by PPE17 loaded core-shell alginate-chitosan nanoparticles after subcutaneous and intranasal administration. Life Sci. 2021;282:119806.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kushwaha Okay, Dwivedi H. Interfacial phenomenon based mostly biocompatible alginate-chitosan nanoparticles containing isoniazid and pyrazinamide. Pharm Nanotechnol. 2018;6(3):209–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soria-Carrera H, Lucía A, De Matteis L, Aínsa JA, de la Fuente JM, Martín-Rapún R. Polypeptidic micelles stabilized with sodium alginate improve the exercise of encapsulated bedaquiline. Macromol Biosci. 2019;19(4):1800397.

    Article 

    Google Scholar
     

  • Latha M, Kurienthomas Okay. Zinc-alginate beads for the managed launch of rifampici. Orient J Chem. 2018;34(1):428.

    Article 

    Google Scholar
     

  • Chen C-C, Chen Y-Y, Yeh C-C, Hsu C-W, Yu S-J, Hsu C-H, Wei T-C, Ho S-N, Tsai P-C, Tune Y-D. Alginate-capped silver nanoparticles as a potent anti-mycobacterial agent towards mycobacterium tuberculosis. Entrance Pharmacol. 2021. https://doi.org/10.3389/fphar.2021.746496/full.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Z, Ye L, Xi J, Wang J, Feng Z-G. Cyclodextrin polymers: construction, synthesis, and use as drug carriers. Prog Poly Sci. 2021;118:101408.

    Article 
    CAS 

    Google Scholar
     

  • Abdellatif FHH, Abdellatif MM. Utilization of sustainable biopolymers in textile processing. In: Ibrahim Nabil, Hussain Chaudhery Mustansar, editors. Inexperienced chemistry for sustainable textiles. Amsterdam: Elsevier; 2021.


    Google Scholar
     

  • Tiwari G, Tiwari R, Rai AK. Cyclodextrins in supply methods: purposes. J Pharm Bioall Sci. 2010;2(2):72–9.

    Article 
    CAS 

    Google Scholar
     

  • Crini G. A historical past of cyclodextrins. Chem Rev. 2014;114(21):10940–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Basha RY, TS SK, Doble M. Twin supply of tuberculosis medicine through cyclodextrin conjugated curdlan nanoparticles to contaminated macrophages. Carbohydr Polym. 2019;218:53–62.

    Article 

    Google Scholar
     

  • Nkanga CI, Krause RWM. Encapsulation of isoniazid-conjugated phthalocyanine-in-cyclodextrin-in-liposomes utilizing heating methodology. Sci Rep. 2019;9(1):1–16.

    Article 
    CAS 

    Google Scholar
     

  • Maiti PK, Çaǧın T, Wang G, Goddard WA. Construction of PAMAM dendrimers: generations 1 by means of 11. Macromolecules. 2004;37(16):6236–54.

    Article 
    CAS 

    Google Scholar
     

  • Kaur D, Jain Okay, Mehra NK, Kesharwani P, Jain NK. A overview on comparative examine of PPI and PAMAM dendrimers. J Nanopart Res. 2016;18(6):1–14.

    Article 
    CAS 

    Google Scholar
     

  • Bapat RA, Joshi CP, Bapat P, Chaubal TV, Pandurangappa R, Jnanendrappa N, Gorain B, Khurana S, Kesharwani P. Using nanoparticles as biomaterials in dentistry. Drug Discov At this time. 2019;24(1):85–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madaan Okay, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug supply and concentrating on: drug-dendrimer interactions and toxicity points. J Pharm Bioall Sci. 2014;6(3):139.

    Article 

    Google Scholar
     

  • Chauhan AS. Dendrimers for drug supply. Molecules. 2018;23(4):938.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menjoge AR, Kannan RM, Tomalia DA. Dendrimer-based drug and imaging conjugates: design concerns for nanomedical purposes. Drug Discov At this time. 2010;15(5–6):171–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Li B, Qiu L, Qiao X, Yang H. Dendrimer-based drug supply methods: historical past, challenges, and newest developments. J Biol Eng. 2022;16(1):1–12.

    Article 

    Google Scholar
     

  • Parekh H. The advance of dendrimers-a versatile concentrating on platform for gene/drug supply. Curr Pharm Des. 2007;13(27):2837–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choudhary S, Gupta L, Rani S, Dave Okay, Gupta U. Influence of dendrimers on solubility of hydrophobic drug molecules. Entrance Pharmacol. 2017;16(8):261. https://doi.org/10.3389/fphar.2017.00261.

    Article 
    CAS 

    Google Scholar
     

  • Bodewein L, Schmelter F, Di Fiore S, Hollert H, Fischer R, Fenske M. Variations in toxicity of anionic and cationic PAMAM and PPI dendrimers in zebrafish embryos and most cancers cell traces. Toxicol Appl Pharmacol. 2016;305:83–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bellini RG, Guimarães AP, Pacheco MA, Dias DM, Furtado VR, de Alencastro RB, Horta BA. Affiliation of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. J Mol Graph Mannequin. 2015;60:34–42. https://doi.org/10.1016/j.jmgm.2015.05.012.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karthikeyan R, Koushik O, Kumar V. Floor modification of cationic dendrimers eases drug supply of anticancer medicine. Nanosci Nanotechnol. 2016;10:108.


    Google Scholar
     

  • Kaur M, Garg T, Narang R. A overview of rising traits within the therapy of tuberculosis. Artif Cells Nanomed Biotechnol. 2016;44(2):478–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Srinivasan M, Rajabi M, Mousa SA. Multifunctional nanomaterials and their purposes in drug supply and most cancers remedy. Nanomaterials. 2015;5(4):1690–703.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zohuri G. Polymer science: a complete reference. Amsterdam: Elsevier; 2012.


    Google Scholar
     

  • Leng Z-H, Zhuang Q-F, Li Y-C, He Z, Chen Z, Huang S-P, Jia H-Y, Zhou J-W, Liu Y, Du L-B. Polyamidoamine dendrimer conjugated chitosan nanoparticles for the supply of methotrexate. Carbohyd Polym. 2013;98(1):1173–8.

    Article 
    CAS 

    Google Scholar
     

  • Jain A, Jain Okay, Mehra NK, Jain N. Lipoproteins tethered dendrimeric nanoconstructs for efficient concentrating on to most cancers cells. J Nanopart Res. 2013;15(10):1–18.

    Article 

    Google Scholar
     

  • Bernkop-Schnürch A, Scholler S, Biebel RG. Improvement of managed drug launch methods based mostly on thiolated polymers. J Management Launch. 2000;66(1):39–48.

    Article 
    PubMed 

    Google Scholar
     

  • Muttil P, Kaur J, Kumar Okay, Yadav AB, Sharma R, Misra A. Inhalable microparticles containing massive payload of anti-tuberculosis medicine. Eur J Pharm Sci. 2007;32(2):140–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma S, Khuller G, Garg S. Alginate-based oral drug supply system for tuberculosis: pharmacokinetics and therapeutic results. J Antimicrob Chemother. 2003;51(4):931–8.

    Article 

    Google Scholar
     

  • Soto E, Kim YS, Lee J, Kornfeld H, Ostroff G. Glucan particle encapsulated rifampicin for focused supply to macrophages. Polymers. 2010;2(4):681–9.

    Article 
    CAS 

    Google Scholar
     

  • Upadhyay TK, Fatima N, Sharma D, Saravanakumar V, Sharma R. Preparation and characterization of beta-glucan particles containing a payload of nanoembedded rifabutin for enhanced focused supply to macrophages. EXCLI J. 2017;16:210.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rawal T, Kremer L, Halloum I, Butani S. Dry-powder inhaler formulation of rifampicin: an improved focused supply system for alveolar tuberculosis. J Aero Med Pulm Drug Supply. 2017;30(6):388–98. https://doi.org/10.1089/jamp.2017.1379.

    Article 
    CAS 

    Google Scholar
     

  • Cunha L, Rosa da Costa AM, Lourenço JP, Buttini F, Grenha A. Spray-dried fucoidan microparticles for pulmonary supply of antitubercular medicine. J Microencapsul. 2018;35(4):392–405.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cunha L, Rodrigues S, Rosa da Costa AM, Faleiro ML, Buttini F, Grenha A. Inhalable fucoidan microparticles combining two antitubercular medicine with potential utility in pulmonary tuberculosis remedy. Polymers. 2018;10(6):636.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cunha L, Rodrigues S, da Costa AMR, Faleiro L, Buttini F, Grenha A. Inhalable chitosan microparticles for simultaneous supply of isoniazid and rifabutin in lung tuberculosis therapy. Drug Dev Ind Pharm. 2019. https://doi.org/10.1080/03639045.2019.1608231.

    Article 
    PubMed 

    Google Scholar
     

  • Sharma A, Vaghasiya Okay, Ray E, Gupta P, Singh AK, Gupta UD, Verma RK. Mycobactericidal exercise of some micro-encapsulated artificial host protection peptides (HDP) by expediting the permeation of antibiotic: a brand new paradigm of drug supply for tuberculosis. Int J Pharm. 2019;558:231–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vasudevan S, Venkatraman A, Yahoob SAM, Jojula M, Sundaram R, Boomi P. Biochemical analysis and molecular docking research on encapsulated astaxanthin for the expansion inhibition of Mycobacterium tuberculosis. J Appl Biol Biotechnol. 2021;9(1):3–9.


    Google Scholar
     

  • Sharma A, Vaghasiya Okay, Ray E, Gupta P, Gupta UD, Singh AK, Verma RK. Focused pulmonary supply of the inexperienced tea polyphenol epigallocatechin gallate controls the expansion of mycobacterium tuberculosis by enhancing the autophagy and suppressing bacterial burden. ACS Biomater Sci Eng. 2020;6(7):4126–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaspar MC, Grégoire N, Sousa JJ, Pais AA, Lamarche I, Gobin P, Olivier J-C, Marchand S, Couet W. Pulmonary pharmacokinetics of levofloxacin in rats after aerosolization of immediate-release chitosan or sustained-release PLGA microspheres. Eur J Pharm Sci. 2016;93:184–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vidyadevi B. Direct lungs concentrating on: another therapy strategy for pulmonary tuberculosis. Asian J Pharm (AJP). 2021. https://doi.org/10.2237/ajp.v15i04.4212.

    Article 

    Google Scholar
     

  • Pingale PL, Amrutkar SV. Quercetin loaded rifampicin-floating microspheres for improved stability and invitro drug launch. Pharmacophore. 2021;12(3):95–9. https://doi.org/10.51847/yBXnl2bSUH.

    Article 

    Google Scholar
     

  • Mwila C, Walker RB. Improved stability of rifampicin within the presence of gastric-resistant isoniazid microspheres in acidic media. Pharmaceutics. 2020;12(3):234.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luciani-Giacobbe LC, Lorenzutti AM, Litterio NJ, Ramírez-Rigo MV, Olivera ME. Anti-tuberculosis site-specific oral supply system that enhances rifampicin bioavailability in a fixed-dose mixture with isoniazid. Drug Supply Trans Re. 2021;11:894–908. https://doi.org/10.1007/s13346-020-00847-9.

    Article 
    CAS 

    Google Scholar
     

  • Upadhyay S, Khan I, Gothwal A, Pachouri PK, Bhaskar N, Gupta UD, Chauhan DS, Gupta U. Conjugated and entrapped HPMA-PLA nano-polymeric micelles based mostly twin supply of first line anti TB medicine: improved and protected drug supply towards delicate and resistant Mycobacterium tuberculosis. Pharm Res. 2017;34(9):1944–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moradi S, Taran M, Mohajeri P, Sadrjavadi Okay, Sarrami F, Karton A, Shahlaei M. Examine of twin encapsulation chance of hydrophobic and hydrophilic medicine right into a nanocarrier based mostly on bio-polymer coated graphene oxide utilizing density practical concept, molecular dynamics simulation and experimental strategies. J Mol Liq. 2018;262:204–17.

    Article 
    CAS 

    Google Scholar
     

  • Zhu M, Li Okay, Zhu Y, Zhang J, Ye X. 3D-printed hierarchical scaffold for localized isoniazid/rifampin drug supply and osteoarticular tuberculosis remedy. Acta Biomater. 2015;16:145–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tabriz AG, Nandi U, Damage AP, Hui H-W, Karki S, Gong Y, Kumar S, Douroumis D. 3D printed bilayer pill with twin managed drug launch for tuberculosis therapy. Int J Pharm. 2021;593:120147.

    Article 

    Google Scholar
     

  • Clemens DL, Lee B-Y, Xue M, Thomas CR, Meng H, Ferris D, Nel AE, Zink JI, Horwitz MA. Focused intracellular supply of antituberculosis medicine to Mycobacterium tuberculosis-infected macrophages through functionalized mesoporous silica nanoparticles. Antimicrob Brokers Chemother. 2012;56(5):2535–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehta S, Kaur G, Bhasin Okay. Tween-embedded microemulsions—physicochemical and spectroscopic evaluation for antitubercular medicine. AAPS PharmSciTech. 2010;11(1):143–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaur G, Mehta S, Kumar S, Bhanjana G, Dilbaghi N. Coencapsulation of hydrophobic and hydrophilic antituberculosis medicine in synergistic Brij 96 microemulsions: a biophysical characterization. J Pharm Sci. 2015;104(7):2203–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mulia Okay, Chadarwati S, Rahyussalim A, Krisanti E. Preparation and characterization of polyvinyl alcohol-chitosan-tripolyphosphate hydrogel for prolonged launch of anti-tuberculosis medicine. IOP Conf Ser Mater Sci Eng. 2019. https://doi.org/10.1088/1757-899X/703/1/012010.

    Article 

    Google Scholar
     

  • Krisanti EA, Gofara TZ, Rahyussalim AJ, Mulia Okay. Polyvinyl alcohol (PVA)/chitosan/sodium tripolyphosphate (STPP) hydrogel formulation with freeze-thaw methodology for anti-tuberculosis medicine prolonged launch. AIP Conf Proc. 2021. https://doi.org/10.1063/5.0063175.

    Article 

    Google Scholar
     

  • Tudose M, Anghel EM, Culita DC, Somacescu S, Calderon-Moreno J, Tecuceanu V, Dumitrascu FD, Dracea O, Popa M, Marutescu L. Covalent coupling of tuberculostatic brokers and graphene oxide: a promising strategy for enhancing and lengthening their antimicrobial purposes. Appl Surf Sci. 2019;471:553–65.

    Article 
    CAS 

    Google Scholar
     

  • Sheikhpour M, Delorme V, Kasaeian A, Amiri V, Masoumi M, Sadeghinia M, Ebrahimzadeh N, Maleki M, Pourazar S. An efficient nano drug supply and mixture remedy for the therapy of tuberculosis. Sci Rep. 2022;12(1):1–11.

    Article 

    Google Scholar
     

  • Chowdhury P, Shankar U. Formulation and analysis of Rifampicin and Ofloxacin niosomes for Drugresistant TB on Logarithmic-phase cultures of Mycobacterium tuberculosis. Int J Res Pharma Sci (IJRPS). 2016;3(4):628–33.


    Google Scholar
     

  • Ferraz-Carvalho RS, Pereira MA, Linhares LA, Lira-Nogueira MC, Cavalcanti IM, Santos-Magalhães NS, Montenegro LM. Results of the encapsulation of usnic acid into liposomes and interactions with antituberculous brokers towards multidrug-resistant tuberculosis scientific isolates. Mem Inst Oswaldo Cruz. 2016;111:330–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yousefi A, Khodaverdi E, Atyabi F, Dinarvand R. Thermosensitive drug permeation by means of liquid crystal-embedded cellulose nitrate membranes. PDA J Pharm Sci Technol. 2010;64(1):54–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Kramer RM, Archer MC, Orr MT, Cauwelaert ND, Beebe EA, Po-wei DH, Dowling QM, Schwartz AM, Fedor DM, Vedvick TS. Improvement of a thermostable nanoemulsion adjuvanted vaccine towards tuberculosis utilizing a design-of-experiments strategy. Int J Nanomed. 2018;13:3689.

    Article 
    CAS 

    Google Scholar
     

  • de Almeida A, Caleffi-Ferracioli Okay, de Regiane B, Scodro L, Baldin VP, Montaholi DC, Spricigo LF, Nakamura-Vasconcelos SS, Hegeto LA, Sampiron EG, Costacurta GF, dos Diego A, Yamazaki S, de Gauze FG, Siqueira VL, Cardoso RF. Eugenol and derivatives exercise towards Mycobacterium tuberculosis, nontuberculous mycobacteria and different micro organism. Future Microbiol. 2019;14:331–44.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang G, Sheng L, Hegde P, Li Y, Aldrich CC. 8-cyanobenzothiazinone analogs with potent antitubercular exercise. Med Chem Res. 2021;30(2):449–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar U, Singh RK. Medical efficacy of beta-sitosterol as adjuvant remedy for the therapy of tuberculosis in youngsters. Int J Paediatr Geriatr. 2021;4(1):141–3. https://doi.org/10.33545/26643685.2021.v4.i1c.144.

    Article 

    Google Scholar
     

  • Rudolph D, Redinger N, Schaible UE, Feldmann C. Transport of lipophilic anti-tuberculosis drug benzothiazone-043 in Ca3 (PO4) 2 nanocontainers. ChemNanoMat. 2021;7(1):7–16.

    Article 
    CAS 

    Google Scholar
     

  • Gupta A, Pandey S, Yadav JS. A overview on latest traits in inexperienced synthesis of gold nanoparticles for tuberculosis. Adv Pharm Bull. 2021;11(1):10.

    Article 
    PubMed 

    Google Scholar
     

  • Govindaraju Okay, Vasantharaja R, Suganya KU, Anbarasu S, Revathy Okay, Pugazhendhi A, Karthickeyan D, Singaravelu G. Unveiling the anticancer and antimycobacterial potentials of bioengineered gold nanoparticles. Course of Biochem. 2020;96:213–9.

    Article 
    CAS 

    Google Scholar
     

  • Srivastava N, Mukhopadhyay M. Biosynthesis and characterization of gold nanoparticles utilizing Zooglea ramigera and evaluation of its antibacterial property. J Cluster Sci. 2015;26(3):675–92.

    Article 
    CAS 

    Google Scholar
     

  • Solar C, Zhang X, Wang J, Chen Y, Meng C. Novel mesoporous silica nanocarriers containing gold; a speedy diagnostic instrument for tuberculosis. BMC Complement Med Ther. 2021;21(1):1–7.

    Article 

    Google Scholar
     

  • Gilbride B, Moreira GMSG, Hust M, Cao C, Stewart L. Catalytic ferromagnetic gold nanoparticle immunoassay for the detection and differentiation of Mycobacterium tuberculosis and Mycobacterium bovis. Anal Chim Acta. 2021;1184:339037.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Hu Okay, Zhang Z, Teng X, Zhang X. Click on DNA biking together with gold nanoparticles loaded with quadruplex DNA motifs allow delicate electrochemical quantitation of the tuberculosis-associated biomarker CFP-10 in sputum. Microchim Acta. 2019;186(9):1–7.

    Article 

    Google Scholar
     

  • Singh N, Dahiya B, Radhakrishnan VS, Prasad T, Mehta PK. Detection of Mycobacterium tuberculosis purified ESAT-6 (Rv3875) by magnetic bead-coupled gold nanoparticle-based immuno-PCR assay. Int J Nanomed. 2018;13:8523.

    Article 
    CAS 

    Google Scholar
     

  • Sadanandan P, Payne NL, Solar G, Ashokan A, Gowd SG, Lal A, Kumar MKS, Pulakkat S, Nair SV, Menon KN. Exploiting the preferential phagocytic uptake of nanoparticle-antigen conjugates for the efficient therapy of autoimmunity. Nanomed Nanotechnol Biol Med. 2022;40:102481.

    Article 
    CAS 

    Google Scholar
     

  • Saravanan V, Ramachandran M, Prasanth V: Exploring numerous Silver Nanoparticles and Nanotechnology. 2022.

  • Mamaeva V, Sahlgren C, Lindén M. Mesoporous silica nanoparticles in medication—latest advances. Adv Drug Deliv Rev. 2013;65(5):689–702.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hwang J, Son J, Website positioning Y, Jo Y, Lee Okay, Lee D, Khan MS, Chavan S, Park C, Sharma A. Useful silica nanoparticles conjugated with beta-glucan to ship anti-tuberculosis drug molecules. J Ind Eng Chem. 2018;58:376–85.

    Article 
    CAS 

    Google Scholar
     

  • Tenland E, Pochert A, Krishnan N, Umashankar Rao Okay, Kalsum S, Braun Okay, Glegola-Madejska I, Lerm M, Robertson BD, Lindén M. Efficient supply of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticles. PLoS ONE. 2019;14(2):e0212858.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beitzinger B, Gerbl F, Vomhof T, Schmid R, Noschka R, Rodriguez A, Wiese S, Weidinger G, Ständker L, Walther P. Antimicrobial peptides: supply by dendritic mesoporous silica nanoparticles enhances the antimicrobial exercise of a napsin-derived peptide towards intracellular Mycobacterium tuberculosis (Adv. Healthcare Mater. 14/2021). Adv Healthcare Mater. 2021;10(14):2170066.

    Article 

    Google Scholar
     

  • Montalvo-Quirós S, Gómez-Graña S, Vallet-Regí M, Prados-Rosales RC, González B, Luque-Garcia JL. Mesoporous silica nanoparticles containing silver as novel antimycobacterial brokers towards Mycobacterium tuberculosis. Colloids Surf, B. 2021;197:111405.

    Article 

    Google Scholar
     

  • Chen W, Cheng C-A, Lee B-Y, Clemens DL, Huang W-Y, Horwitz MA, Zink JI. Facile technique enabling each excessive loading and excessive launch quantities of the water-insoluble drug clofazimine utilizing mesoporous silica nanoparticles. ACS Appl Mater Interfaces. 2018;10(38):31870–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ang CW, Tan L, Qu Z, West NP, Cooper MA, Popat A, Blaskovich MA. Mesoporous silica nanoparticles enhance oral supply of antitubercular bicyclic nitroimidazoles. ACS Biomater Sci Eng. 2021. https://doi.org/10.1021/acsbiomaterials.1c00807.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Selvarajan V, Obuobi S, Ee PLR. Silica nanoparticles—a flexible instrument for the therapy of bacterial infections. Entrance Chem. 2020;8:602.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhushan B, Luo D, Schricker SR, Sigmund W, Zauscher S. Handbook of nanomaterials properties. Berlin: Springer; 2014.

    E-book 

    Google Scholar
     

  • Chen Y, Guo S, Zhao M, Zhang P, Xin Z, Tao J, Bai L. Amperometric DNA biosensor for Mycobacterium tuberculosis detection utilizing flower-like carbon nanotubes-polyaniline nanohybrid and enzyme-assisted sign amplification technique. Biosens Bioelectron. 2018;119:215–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buya AB, Witika BA, Bapolisi AM, Mwila C, Mukubwa GK, Memvanga PB, Makoni PA, Nkanga CI. Utility of lipid-based nanocarriers for antitubercular drug supply: a overview. Pharmaceutics. 2021;13(12):2041.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehta S, Kaur G, Bhasin Okay. Entrapment of a number of anti-Tb medicine in microemulsion system: quantitative evaluation, stability, and in vitro launch research. J Pharm Sci. 2010;99(4):1896–911.

    Article 
    CAS 

    Google Scholar
     

  • Rajput A, Mandlik S, Pokharkar V. Nanocarrier-based approaches for the environment friendly supply of anti-tubercular medicine and vaccines for administration of tuberculosis. Entrance Pharmacol. 2021. https://doi.org/10.3389/fphar.2021.749945/full.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eleleemy M, Amin BH, Nasr M, Sammour OA. A succinct overview on the therapeutic potential and supply methods of Eugenol. Arch Pharm Sci Ain Shams College. 2020;4(2):290–311.


    Google Scholar
     

  • Talegaonkar S, Azeem A, Ahmad FJ, Khar RK, Pathan SA, Khan ZI. Microemulsions: a novel strategy to enhanced drug supply. Current Patents Drug Supply Type. 2008;2(3):238–57. https://doi.org/10.2174/187221108786241679.

    Article 
    CAS 

    Google Scholar
     

  • Sheikh BA, Bhat BA, Alshehri B, Mir RA, Mir WR, Parry ZA, Mir MA. Nano-drug supply methods: doable finish to the rising threats of tuberculosis. J Biomed Nanotechnol. 2021;17(12):2298–318.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kompella UB, Kadam RS, Lee VH. Current advances in ophthalmic drug supply. Ther Deliv. 2010;1(3):435–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raina N, Pahwa R, Bhattacharya J, Paul AK, Nissapatorn V, de Lourdes PM, Oliveira SM, Dolma KG, Rahmatullah M, Wilairatana P. Drug supply methods and biomedical significance of hydrogels: translational concerns. Pharmaceutics. 2022;14(3):574.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan Y, Liu L, Yuan S, Solar J, Li Z. pH-responsive peptide supramolecular hydrogels with antibacterial exercise. Langmuir. 2017;33(13):3234–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmad N, Pandey M, Mohamad N, Chen XY, Amin MCIM. Hydrogels for pulmonary drug supply. In: Dua Kamal, Hansbro Philip M, Wadhwa Ridhima, Haghi Mehra, Pont Lisa G, Williams Kylie A, editors. Focusing on persistent inflammatory lung ailments utilizing superior drug supply methods. Amsterdam: Elsevier; 2020.


    Google Scholar
     

  • Guvendiren M, Molde J, Soares RM, Kohn J. Designing biomaterials for 3D printing. ACS Biomater Sci Eng. 2016;2(10):1679–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao S, Zhu M, Zhang J, Zhang Y, Liu Z, Zhu Y, Zhang C. Three dimensionally printed mesoporous bioactive glass and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds for bone regeneration. J Mater Chem B. 2014;2(36):6106–18. https://doi.org/10.1039/c4tb00838c.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malakar TK, Chaudhari VS, Dwivedy SK, Murty US, Banerjee S. 3D printed housing gadgets for segregated compartmental supply of oral fixed-dose anti-tubercular medicine adopting print and fill technique. Print Addit Manuf. 2021. https://doi.org/10.1089/3dp.2021.0037.

    Article 

    Google Scholar
     

  • Sasikumar Okay, Ghosh AR, Dusthackeer A. Antimycobacterial potentials of quercetin and rutin towards Mycobacterium tuberculosis H37Rv. 3 Biotech. 2018;8(10):1–6.

    Article 

    Google Scholar
     

  • Chaudhari VS, Malakar TK, Murty US, Banerjee S. Extruded filaments derived 3D printed medicated pores and skin patch to mitigate harmful pulmonary tuberculosis: design to supply. Skilled Opin Drug Deliv. 2021;18(2):301–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marcianes P, Negro S, Barcia E, Montejo C, Fernández-Carballido A. Potential lively concentrating on of gatifloxacin to macrophages by way of surface-modified PLGA microparticles destined to deal with tuberculosis. AAPS PharmSciTech. 2020;21(1):1–14.

    Article 

    Google Scholar
     

  • Shah S, Cristopher D, Sharma S, Soniwala M, Chavda J. Inhalable linezolid loaded PLGA nanoparticles for therapy of tuberculosis: design, growth and in vitro analysis. J Drug Deliv Sci Technol. 2020;60:102013.

    Article 
    CAS 

    Google Scholar
     

  • Operti MC, Bernhardt A, Grimm S, Engel A, Figdor CG, Tagit O. PLGA-based nanomedicines manufacturing: applied sciences overview and challenges in industrial scale-up. Int J Pharm. 2021;605:120807.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baranyai Z, Soria-Carrera H, Alleva M, Millán-Placer AC, Lucía A, Martín-Rapún R, Aínsa JA, de la Fuente JM. Nanotechnology-based focused drug supply: an rising instrument to beat tuberculosis. Adv Ther. 2021;4(1):2000113.

    Article 

    Google Scholar
     

  • Roy A, Agnivesh PK, Sau S, Kumar S, Kalia NP. Tweaking host immune responses for novel therapeutic approaches towards Mycobacterium tuberculosis. Drug Discov At this time. 2023. https://doi.org/10.1016/j.drudis.2023.103693.

    Article 
    PubMed 

    Google Scholar
     

  • Hamed A, Osman R, Al-Jamal KT, Holayel SM, Geneidi A-S. Enhanced antitubercular exercise, alveolar deposition and macrophages uptake of mannosylated secure nanoliposomes. J Drug Deliv Sci Technol. 2019;51:513–23.

    Article 
    CAS 

    Google Scholar
     

  • Vieira AC, Chaves LL, Pinheiro M, Lima SAC, Ferreira D, Sarmento B, Reis S. Mannosylated strong lipid nanoparticles for the selective supply of rifampicin to macrophages. Artif Cells Nanomed Biotechnol. 2018;46(sup1):653–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Galdopórpora JM, Martinena C, Bernabeu E, Riedel J, Palmas L, Castangia I, Manca ML, Garcés M, Lázaro-Martinez J, Salgueiro MJ. Inhalable mannosylated rifampicin-curcumin co-loaded nanomicelles with enhanced in vitro antimicrobial efficacy for an optimized pulmonary tuberculosis remedy. Pharmaceutics. 2022;14(5):959.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarkar S, Dyett B, Lakic B, Ball AS, Yeo LY, White JF, Soni S, Drummond CJ, Conn CE. Cubosome lipid nanocarriers as a drug supply car for intracellular mycobacterium tuberculosis infections. ACS Appl Mater Interfaces. 2023;15(18):21819–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Worstell NC, Singla A, Saenkham P, Galbadage T, Sule P, Lee D, Mohr A, Kwon JS-I, Cirillo JD, Wu H-J. Hetero-multivalency of Pseudomonas aeruginosa lectin LecA binding to mannequin membranes. Sci Rep. 2018;8(1):1–11.

    Article 
    CAS 

    Google Scholar
     

  • Siegel RA, Kirtane AR, Panyam J. Assessing the advantages of drug supply by nanocarriers: a partico/pharmacokinetic framework. IEEE Trans Biomed Eng. 2016;64(9):2176–85.

    Article 
    PubMed 

    Google Scholar
     

  • Garcia-Contreras L, Sethuraman V, Kazantseva M, Hickey A. Efficacy of mixed rifampicin formulations delivered by the pulmonary path to deal with tuberculosis within the guinea pig mannequin. Pharmaceutics. 2021;13(8):1309.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma PR, Dravid AA, Kalapala YC, Gupta VK, Jeyasankar S, Goswami A, Agarwal R. Cationic inhalable particles for enhanced drug supply to M. tuberculosis contaminated macrophages. Biomater Adv. 2022;133:112612.

    Article 
    PubMed 

    Google Scholar
     

  • Gangadhar KN, Changsan V, Buatong W, Srichana T. Part habits of rifampicin in cholesterol-based liquid crystals and polyethylene glycol. Eur J Pharm Sci. 2012;47(5):804–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Truzzi E, Capocefalo A, Meneghetti F, Maretti E, Mori M, Iannuccelli V, Domenici F, Castellano C, Leo E. Design and physicochemical characterization of novel hybrid SLN-liposome nanocarriers for the good co-delivery of two antitubercular medicine. J Drug Deliv Sci Technol. 2022;70:103206.

    Article 
    CAS 

    Google Scholar
     

  • Roy I, Vij N. Nanodelivery in airway ailments: challenges and therapeutic purposes. Nanomed Nanotechnol Biol Med. 2010;6(2):237–44.

    Article 
    CAS 

    Google Scholar
     

  • Han C, Romero N, Fischer S, Dookran J, Berger A, Doiron AL. Current developments in using nanoparticles for therapy of biofilms. Nanotechnol Rev. 2017;6(5):383–404.

    Article 
    CAS 

    Google Scholar
     

  • Misra A, Hickey AJ, Rossi C, Borchard G, Terada H, Makino Okay, Fourie PB, Colombo P. Inhaled drug remedy for therapy of tuberculosis. Tuberculosis. 2011;91(1):71–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pham D-D, Fattal E, Tsapis N. Pulmonary drug supply methods for tuberculosis therapy. Int J Pharm. 2015;478(2):517–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan ZM, Lai GP, Pandey M, Srichana T, Pichika MR, Gorain B, Bhattamishra SK, Choudhury H. Novel approaches for the therapy of pulmonary tuberculosis. Pharmaceutics. 2020;12(12):1196.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghosh S, Ghosh S, Sil PC. Function of nanostructures in improvising oral medication. Toxicol Rep. 2019;6:358–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Z, Niu N, Lou C, Wang X, Wang C, Shi Z. Preparation, characterrization, and in-vitro cytotoxicity of nanoliposomes loaded with anti-tuberculous medicine and TGF-β1 siRNA for enhancing spinal tuberculosis remedy. BMC Infect Dis. 2022. https://doi.org/10.1186/s12879-022-07791-8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang Z, Wei J, Peng N, Li Y. Genetic engineering of a phage-based supply system for endogenous III-A CRISPR-cas system towards mycobacterium tuberculosis. In: Tofazzal Islam M, Molla Kutubuddin Ali, editors. CRISPR-cas strategies. New York: Springer; 2021.


    Google Scholar
     

  • Dubey AK, Kumar Gupta V, Kujawska M, Orive G, Kim N-Y, Li C-Z, Kumar Mishra Y, Kaushik A. Exploring nano-enabled CRISPR-Cas-powered methods for environment friendly diagnostics and therapy of infectious ailments. J Nanostruct Chem. 2022. https://doi.org/10.1007/s40097-022-00472-7.

    Article 

    Google Scholar
     

  • Babunovic GH, DeJesus MA, Bosch B, Chase MR, Barbier T, Dickey AK, Bryson BD, Rock JM, Fortune SM. CRISPR interference reveals that all-trans-retinoic acid promotes macrophage management of mycobacterium tuberculosis by limiting bacterial entry to ldl cholesterol and propionyl coenzyme A. MBio. 2022;13(1):e03683-e3621.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verma M, Furin J, Langer R, Traverso G. Making the case: creating modern adherence options for the therapy of tuberculosis. BMJ Glob Well being. 2019;4(1):e001323.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furin J, Tommasi M, Garcia-Prats AJ. Drug-resistant tuberculosis: will grand guarantees fail youngsters and adolescents? Lancet Youngster Adolesc Well being. 2018;2(4):237–8.

    Article 
    PubMed 

    Google Scholar
     

  • Harausz EP, Garcia-Prats AJ, Seddon JA, Schaaf HS, Hesseling AC, Achar J, Bernheimer J, Cruz AT, D’Ambrosio L, Detjen A. New and repurposed medicine for pediatric multidrug-resistant tuberculosis Observe-based suggestions. Am J Respir Crit Care Med. 2017;195(10):1300–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swindells S, Siccardi M, Barrett SE, Olsen DB, Grobler JA, Podany AT, Nuermberger E, Kim P, Barry C, Owen A. Lengthy-acting formulations for the therapy of latent tuberculous an infection: alternatives and challenges. Int J Tuberc Lung Dis. 2018;22(2):125–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park EJ, Amatya S, Kim MS, Park JH, Seol E, Lee H, Shin Y-H, Na DH. Lengthy-acting injectable formulations of antipsychotic medicine for the therapy of schizophrenia. Arch Pharmacal Res. 2013;36(6):651–9.

    Article 
    CAS 

    Google Scholar
     

  • Kaushik A, Ammerman NC, Tyagi S, Saini V, Vervoort I, Lachau-Durand S, Nuermberger E, Andries Okay. Exercise of a long-acting injectable bedaquiline formulation in a paucibacillary mouse mannequin of latent tuberculosis an infection. Antimicrob Brokers Chemother. 2019;63(4):e00007-00019.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diacon A, Donald P, Pym A, Grobusch M, Patientia R, Mahanyele R, Bantubani N, Narasimooloo R, De Marez T, Van Heeswijk R. Randomized pilot trial of eight weeks of bedaquiline (TMC207) therapy for multidrug-resistant tuberculosis: long-term consequence, tolerability, and impact on emergence of drug resistance. Antimicrob Brokers Chemother. 2012;56(6):3271–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajoli RK, Podany AT, Moss DM, Swindells S, Flexner C, Owen A, Siccardi M. Modelling the long-acting administration of anti-tuberculosis brokers utilizing PBPK: a proof of idea examine. Int J Tuberc Lung Dis. 2018;22(8):937–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verma M, Vishwanath Okay, Eweje F, Roxhed N, Grant T, Castaneda M, Steiger C, Mazdiyasni H, Bensel T, Minahan D. A gastric resident drug supply system for extended gram-level dosing of tuberculosis therapy. Sci Transl Med. 2019;11(483):6267.

    Article 

    Google Scholar
     

  • Adeleke OA, Fisher L, Moore IN, Nardone GA, Sher A. A protracted-acting thermoresponsive injectable formulation of tin protoporphyrin sustains antitubercular efficacy in a murine an infection mannequin. ACS Pharmacol Transl Sci. 2020;4(1):276–87.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sadeghi I, Byrne J, Shakur R, Langer R. Engineered drug supply gadgets to handle world well being challenges. J Management Launch. 2021;331:503–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raza A, Sime FB, Cabot PJ, Maqbool F, Roberts JA, Falconer JR. Stable nanoparticles for oral antimicrobial drug supply: a overview. Drug Discov At this time. 2019;24(3):858–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh H, Jindal S, Singh M, Sharma G, Kaur IP. Nano-formulation of rifampicin with enhanced bioavailability: growth, characterization and in-vivo security. Int J Pharm. 2015;485(1–2):138–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elbrink Okay, Van Hees S, Chamanza R, Roelant D, Loomans T, Holm R, Kiekens F. Utility of strong lipid nanoparticles as a long-term drug supply platform for intramuscular and subcutaneous administration: in vitro and in vivo analysis. Eur J Pharm Biopharm. 2021;163:158–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pigrau-Serrallach C, Rodríguez-Pardo D. Bone and joint tuberculosis. Eur Backbone J. 2013;22(4):556–66.

    Article 
    PubMed 

    Google Scholar
     

  • Hua L, Qian H, Lei T, Liu W, He X, Zhang Y, Lei P, Hu Y. Anti-tuberculosis drug supply for tuberculous bone defects. Skilled Opin Drug Deliv. 2021;18(12):1815–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Zhao S, Zhu Y, Huang Y, Zhu M, Tao C, Zhang C. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater. 2014;10(5):2269–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao S, Zhang J, Zhu M, Zhang Y, Liu Z, Ma Y, Zhu Y, Zhang C. Results of practical teams on the construction, physicochemical and organic properties of mesoporous bioactive glass scaffolds. J Mater Chem B. 2015;3(8):1612–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu C, Chang J. Multifunctional mesoporous bioactive glasses for efficient supply of therapeutic ions and drug/progress elements. J Management Launch. 2014;193:282–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller SR, Heurtaux D, Baati T, Horcajada P, Grenèche J-M, Serre C. Biodegradable therapeutic MOFs for the supply of bioactive molecules. Chem Commun. 2010;46(25):4526–8.

    Article 
    CAS 

    Google Scholar
     

  • Giménez-Marqués M, Hidalgo T, Serre C, Horcajada P. Nanostructured metallic–natural frameworks and their bio-related purposes. Coord Chem Rev. 2016;307:342–60.

    Article 

    Google Scholar
     

  • Semaan R, Traboulsi R, Kanj S. Major Mycobacterium tuberculosis advanced cutaneous an infection: report of two instances and literature overview. Int J Infect Dis. 2008;12(5):472–7.

    Article 
    PubMed 

    Google Scholar
     

  • van Staden D, Haynes RK, Viljoen JM. Adapting clofazimine for therapy of cutaneous tuberculosis through the use of self-double-emulsifying drug supply methods. Antibiotics. 2022;11(6):806.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu Y, Wu J, Liao S, Solar Z. Treating tuberculosis with excessive doses of anti-TB medicine: mechanisms and outcomes. Ann Clin Microbiol Antimicrob. 2017;16(1):1–13.

    Article 

    Google Scholar
     

  • Ammerman NC, Swanson RV, Bautista EM, Almeida DV, Saini V, Omansen TF, Guo H, Chang YS, Li S-Y, Tapley A. Influence of clofazimine dosing on therapy shortening of the first-line routine in a mouse mannequin of tuberculosis. Antimicrob Brokers Chemother. 2018;62(7):e00636-e618.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Staden D, Haynes RK, Viljoen JM. Adapting clofazimine for therapy of cutaneous tuberculosis through the use of self-double-emulsifying drug supply methods. Antibiotics. 2022;11(6):806. https://doi.org/10.3390/antibiotics11060806.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caon T, Campos CEM, Simões CMO, Silva MAS. Novel views within the tuberculosis therapy: administration of isoniazid by means of the pores and skin. Int J Pharm. 2015;494(1):463–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Basu S, Monira S, Modi RR, Choudhury N, Mohan N, Padhi TR, Balne PK, Sharma S, Panigrahi SR. Diploma, period, and causes of visible impairment in eyes affected with ocular tuberculosis. J Ophthalmic Inflam Infect. 2014;4(1):1–5.

    Article 

    Google Scholar
     

  • Bennett JE, Dolin R, Blaser MJ: Mandell, douglas, and bennett’s rules and observe of infectious ailments E-book: Elsevier Well being Sciences; 2019.

  • Agrawal R, Gunasekeran DV, Raje D, Agarwal A, Nguyen QD, Kon OM, Pavesio C, Gupta V. World variations and challenges with tubercular uveitis within the collaborative ocular tuberculosis examine. Make investments Ophthalmol Vis Sci. 2018;59(10):4162–71.

    Article 
    PubMed 

    Google Scholar
     

  • Agrawal R, Ludi Z, Betzler BK, Testi I, Mahajan S, Rousellot A, Kempen JH, Smith JR, McCluskey P, Nguyen QD. The collaborative ocular tuberculosis examine (COTS) calculator—a consensus-based determination instrument for initiating antitubercular remedy in ocular tuberculosis. Eye. 2022. https://doi.org/10.1038/s41433-022-02147-7.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Z, Liu J, Wan C, Liu P, Wan H, Guo Z, Tong J, Cao X. Profitable therapy of tuberculosis verrucosa cutis with fester as major manifestation with photodynamic remedy and anti-tubercular medicine. Photodiagn Photodyn Ther. 2022;38:102763.

    Article 
    CAS 

    Google Scholar
     

  • Patel U, Rathnayake Okay, Jani H, Jayawardana KW, Dhakal R, Duan L, Jayawardena SN. Close to-infrared responsive focused drug supply system that supply chemo-photothermal remedy towards bacterial an infection. Nano Choose. 2021;2(9):1750–69.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Lin A, Liu J, Chen X, Zhu X, Gong Y, Yuan G, Chen L, Liu J. Enzyme-responsive mesoporous ruthenium for mixed chemo-photothermal remedy of drug-resistant micro organism. ACS Appl Mater Interfaces. 2019;11(30):26590–606.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sia JK, Georgieva M, Rengarajan J. Innate immune defenses in human tuberculosis: an summary of the interactions between Mycobacterium tuberculosis and innate immune cells. J Immunol Res. 2015. https://doi.org/10.1155/2015/747543.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cadena AM, Flynn JL, Fortune SM. The significance of first impressions: early occasions in Mycobacterium tuberculosis an infection affect consequence. MBio. 2016;7(2):e00342-e316.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Divangahi M, Aaby P, Khader SA, Barreiro LB, Bekkering S, Chavakis T, van Crevel R, Curtis N, DiNardo AR, Dominguez-Andres J. Educated immunity, tolerance, priming and differentiation: distinct immunological processes. Nat Immunol. 2021;22(1):2–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong W, Wu X. Differential analysis of latent tuberculosis an infection and lively tuberculosis: a key to a profitable tuberculosis management technique. Entrance Microbiol. 2021. https://doi.org/10.3389/fmicb.2021.745592.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan N, Vidyarthi A, Javed S, Agrewala JN. Innate immunity holding the flanks till bolstered by adaptive immunity towards Mycobacterium tuberculosis an infection. Entrance Microbiol. 2016;7:328.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mi J, Liang Y, Liang J, Gong W, Wang S, Zhang J, Li Z, Wu X. The analysis progress in immunotherapy of tuberculosis. Entrance Cell Infect Microbiol. 2021. https://doi.org/10.3389/fcimb.2021.763591.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson B, Bekker LG, Ress S, Kaplan G. Recombinant interleukin 2 adjunctive remedy in multidrug-resistant tuberculosis. In: Chadwick Derek J, Cardew Gail, editors. Genetics and tuberculosis: novartis basis symposium 217. Hoboken: Wiley On-line Library; 1998.


    Google Scholar
     

  • Kim YG, Baltabekova AZ, Zhiyenbay EE, Aksambayeva AS, Shagyrova ZS, Khannanov R, Ramanculov EM, Shustov AV. Recombinant vaccinia virus-coded interferon inhibitor B18R: expression, refolding and a use in a mammalian expression system with a RNA-vector. PLoS ONE. 2017;12(12):e0189308.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma Y, Chen H-D, Wang Y, Wang Q, Li Y, Zhao Y, Zhang X-L. Interleukin 24 as a novel potential cytokine immunotherapy for the therapy of Mycobacterium tuberculosis an infection. Microbes Infect. 2011;13(12–13):1099–110.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Netea MG, Lewis EC, Azam T, Joosten LA, Jaekal J, Bae S-Y, Dinarello CA, Kim S-H. Interleukin-32 induces the differentiation of monocytes into macrophage-like cells. Proc Natl Acad Sci. 2008;105(9):3515–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li W, Deng W, Xie J. The biology and function of interleukin-32 in tuberculosis. J Immunol Res. 2018. https://doi.org/10.1155/2018/1535194.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teitelbaum R, Glatman-Freedman A, Chen B, Robbins JB, Unanue E, Casadevall A, Bloom BR. A mAb recognizing a floor antigen of Mycobacterium tuberculosis enhances host survival. Proc Natl Acad Sci. 1998;95(26):15688–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamasur B, Haile M, Pawlowski A, Schröder U, Källenius G, Svenson SB. A mycobacterial lipoarabinomannan particular monoclonal antibody and its F (ab′) 2 fragment lengthen survival of mice contaminated with Mycobacterium tuberculosis. Clin Exp Immunol. 2004;138(1):30–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • AlMatar M, Makky EA, Yakıcı G, Var I, Kayar B, Köksal F. Antimicrobial peptides as an alternative choice to anti-tuberculosis medicine. Pharmacol Res. 2018;128:288–305.

    Article 
    PubMed 

    Google Scholar
     

  • Saeed AF, Wang R, Ling S, Wang S. Antibody engineering for pursuing a more healthy future. Entrance Microbiol. 2017;8:495.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gutiérrez-Ortega A, Moreno DA, Ferrari SA, Espinosa-Andrews H, Ortíz EP, Milián-Suazo F, Alvarez AH. Excessive-yield manufacturing of main T-cell ESAT6-CFP10 fusion antigen of M. tuberculosis advanced using codon-optimized artificial gene. Int J Biol Macromol. 2021;171:82–8. https://doi.org/10.1016/j.ijbiomac.2020.12.179.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bianchi L, Galli L, Moriondo M, Veneruso G, Becciolini L, Azzari C, Chiappini E, de Martino M. Interferon-gamma launch assay improves the analysis of tuberculosis in youngsters. Pediatr Infect Dis J. 2009;28(6):510–4.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang X, Liu X-Y, Yang H, Chen J-N, Lin Y, Han S-Y, Cao Q, Zeng H-S, Ye J-W. A polyhydroxyalkanoates-based provider platform of bioactive substances for therapeutic purposes. Entrance Bioeng Biotechnol. 2021. https://doi.org/10.3389/fbioe.2021.798724/full.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saracino A, Scotto G, Fornabaio C, Martinelli D, Faleo G, Cibelli D, Tartaglia A, Di Tuwo R, Fazio V, Prato R. QuantiFERON®-TB gold in-tube check (QFT-GIT) for the screening of latent tuberculosis in latest immigrants to Italy. New Microbiol. 2009;32(4):369.

    PubMed 

    Google Scholar
     

  • Patil TS, Deshpande AS. Progressive methods within the analysis and therapy of tuberculosis: a patent overview (2014–2017). Skilled Opin Ther Pat. 2018;28(8):615–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brigden G, Castro JL, Ditiu L, Grey G, Hanna D, Low M, Matsoso MP, Perry G, Spigelman M, Swaminathan S. Tuberculosis and antimicrobial resistance–new fashions of analysis and growth wanted. Bull World Well being Organ. 2017;95(5):315–315.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pool MP. The medicines patent pool publicizes first license for tuberculosis therapy. Geneva: UNITAID; 2017.


    Google Scholar
     

  • Bekale RB, Du Plessis S-M, Hsu N-J, Sharma JR, Sampson SL, Jacobs M, Meyer M, Morse GD, Dube A. Mycobacterium tuberculosis and interactions with the host immune system: alternatives for nanoparticle based mostly immunotherapeutics and vaccines. Pharm Res. 2019;36(1):1–15.

    Article 
    CAS 

    Google Scholar
     

  • Verma N, Arora V, Awasthi R, Chan Y, Jha NK, Thapa Okay, Jawaid T, Kamal M, Gupta G, Liu G. Current developments, challenges and future prospects in superior drug supply methods within the administration of tuberculosis. J Drug Deliv Sci Technol. 2022. https://doi.org/10.1016/j.jddst.2022.103690.

    Article 

    Google Scholar
     

  • ID93 + GLA-SE vaccine [https://classic.clinicaltrials.gov/ct2/results?cond=&term=ID93+%2B+GLA-SE+vaccine&cntry=&state=&city=&dist=%20cite%20link%20and%20add%20date]

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments