Tuesday, May 7, 2024
HomeNanotechnologyNanoengineered injectable hydrogels derived from layered double hydroxides and alginate for sustained...

Nanoengineered injectable hydrogels derived from layered double hydroxides and alginate for sustained launch of protein therapeutics in tissue engineering purposes | Journal of Nanobiotechnology


  • Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, Appel EA. Translational purposes of hydrogels. Chem Rev. 2021;121(18):11385–457.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kharkar PM, Kiick KL, Kloxin AM. Designing degradable hydrogels for orthogonal management of cell microenvironments. Chem Soc Rev. 2013;42(17):7335–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vermonden T, Censi R, Hennink WE. Hydrogels for Protein Supply. Chem Rev. 2012;112(5):2853–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thambi T, Li Y, Lee DS. Injectable hydrogels for sustained launch of therapeutic brokers. J Management Launch. 2017;267:57–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gil MS, Cho J, Thambi T, Giang Phan VH, Kwon I, Lee DS. Bioengineered sturdy hybrid hydrogels enrich the steadiness and efficacy of organic medication. J Managed Launch. 2017;267:119–32.

    Article 
    CAS 

    Google Scholar
     

  • Kim SH, Thambi T, Lym JS, Giang Phan VH, Lee DS. Tunable engineering of heparinized injectable hydrogels for affinity-based sustained supply of bioactive elements. Macromol Mater Eng. 2019;304(9):1900279.

    Article 

    Google Scholar
     

  • Kim SH, Thambi T, Giang Phan VH, Lee DS. Modularly engineered alginate bioconjugate hydrogel as biocompatible injectable scaffold for in situ biomineralization. Carbohydrate Polymers. 2020;233:115832.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phan VHG, Mathiyalagan R, Nguyen M-T, Tran T-T, Murugesan M, Ho T-N, Huong H, Yang DC, Li Y, Thambi T. Ionically cross-linked alginate-chitosan core-shell hydrogel beads for oral supply of insulin. Int J Biol Macromol. 2022;222:262–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soroush E, Mohammadpour Z, Kharaziha M, Bakhsheshi-Rad HR, Berto F. Polysaccharides-based nanofibrils: From tissue engineering to biosensor purposes. Carbohyd Polym. 2022;291: 119670.

    Article 
    CAS 

    Google Scholar
     

  • Lee KY, Mooney DJ. Alginate: properties and biomedical purposes. Prog Polym Sci. 2012;37(1):106–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abasalizadeh F, Moghaddam SV, Alizadeh E, ElmiraKashani E, BagherFazljou SM, Torbati M, Akbarzadeh A. Alginate-based hydrogels as drug supply automobiles in most cancers therapy and their purposes in wound dressing and 3D bioprinting. J Biol Eng. 2020;14(1):8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janarthanan G, Lee S, Noh I. 3D printing of bioinspired alginate-albumin based mostly instantaneous gel ink with electroconductivity and its growth to direct four-axis printing of hole porous tubular constructs with out supporting supplies. Adv Func Mater. 2021;31(45):2104441.

    Article 
    CAS 

    Google Scholar
     

  • Janarthanan G, Kim JH, Kim I, Lee C, Chung E-J, Noh I. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering purposes. Biofabrication. 2022;14(3): 035013.

    Article 

    Google Scholar
     

  • Chimene D, Alge DL, Gaharwar AK. Two-dimensional nanomaterials for biomedical purposes: rising tendencies and future prospects. Adv Mater. 2015;27(45):7261–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chimene D, Kaunas R, Gaharwar AK. Hydrogel bioink reinforcement for additive manufacturing: a centered overview of rising methods. Adv Mater. 2020;32(1):1902026.

    Article 
    CAS 

    Google Scholar
     

  • Gaharwar AK, Cross LM, Peak CW, Gold Ok, Carrow JK, Brokesh A, Singh KA. 2D nanoclay for biomedical purposes: regenerative medication, therapeutic supply, and additive manufacturing. Adv Mater. 2019;31(23):1900332.

    Article 

    Google Scholar
     

  • Lokhande G, Carrow JK, Thakur T, Xavier JR, Parani M, Bayless KJ, Gaharwar AK. Nanoengineered injectable hydrogels for wound therapeutic utility. Acta Biomater. 2018;70:35–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park SH, Kim RS, Stiles WR, Jo M, Zeng L, Rho S, Baek Y, Kim J, Kim MS, Kang H, Choi HS. Injectable thermosensitive hydrogels for a sustained launch of iron nanochelators. Adv Sci. 2022;9(15):2200872.

    Article 
    CAS 

    Google Scholar
     

  • Liu B, Solar J, Zhu J, Li B, Ma C, Gu X, Liu Ok, Zhang H, Wang F, Su J, Yang Y. Injectable and NIR-responsive DNA–inorganic hybrid hydrogels with excellent photothermal remedy. Adv Mater. 2020;32(39):2004460.

    Article 
    CAS 

    Google Scholar
     

  • Lv Z, Hu T, Bian Y, Wang G, Wu Z, Li H, Liu X, Yang S, Tan C, Liang R, Weng X. A MgFe-LDH nanosheet-incorporated sensible thermo-responsive hydrogel with controllable progress issue releasing functionality for bone regeneration. Adv Mater. 2023;35(5):2206545.

    Article 
    CAS 

    Google Scholar
     

  • Zhao Y, Cui Z, Liu B, Xiang J, Qiu D, Tian Y, Qu X, Yang Z. An Injectable sturdy hydrogel for bone reconstruction. Adv Healthcare Mater. 2019;8(17):1900709.

    Article 

    Google Scholar
     

  • Phan VHG, Murugesan M, Huong H, Le T-T, Phan T-H, Manivasagan P, Mathiyalagan R, Jang E-S, Yang DC, Li Y, Thambi T. Cellulose nanocrystals-incorporated thermosensitive hydrogel for managed launch, 3D printing, and breast most cancers therapy purposes. ACS Appl Mater Interfaces. 2022;14(38):42812–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Min Jung J, Lip Jung Y, Han Kim S, Sung Lee D, Thambi T. Injectable hydrogel imbibed with camptothecin-loaded mesoporous silica nanoparticles as an implantable sustained supply depot for most cancers remedy. J Colloid Interf Sci. 2023;636:328–40.

    Article 
    CAS 

    Google Scholar
     

  • Zhou Y, Wan C, Yang Y, Yang H, Wang S, Dai Z, Ji Ok, Jiang H, Chen X, Lengthy Y. Extremely stretchable, elastic, and ionic conductive hydrogel for synthetic smooth electronics. Adv Func Mater. 2019;29(1):1806220.

    Article 

    Google Scholar
     

  • Lin X, Xing X, Li S, Wu X, Jia Q, Tu H, Bian H, Lu A, Zhang L, Yang H, Duan B. Anisotropic hybrid hydrogels constructed by way of the noncovalent meeting for biomimetic tissue scaffold. Adv Func Mater. 2022;32(21):2112685.

    Article 
    CAS 

    Google Scholar
     

  • Wang X, Fang J, Zhu W, Zhong C, Ye D, Zhu M, Lu X, Zhao Y, Ren F. Bioinspired extremely anisotropic, ultrastrong and stiff, and osteoconductive mineralized wooden hydrogel composites for bone restore. Adv Func Mater. 2021;31(20):2010068.

    Article 
    CAS 

    Google Scholar
     

  • Mredha MTI, Guo YZ, Nonoyama T, Nakajima T, Kurokawa T, Gong JP. A facile methodology to manufacture anisotropic hydrogels with completely aligned hierarchical fibrous buildings. Adv Mater. 2018;30(9):1704937.

    Article 

    Google Scholar
     

  • Jiang Y, Krishnan N, Heo J, Fang RH, Zhang L. Nanoparticle–hydrogel superstructures for biomedical purposes. J Management Launch. 2020;324:505–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ameena Shirin VK, Sankar R, Johnson AP, Gangadharappa HV, Pramod Ok. Superior drug supply purposes of layered double hydroxide. J Managed Launch. 2021;330:398–426.

    Article 
    CAS 

    Google Scholar
     

  • Jing G, Yang L, Wang H, Niu J, Li Y, Wang S. Interference of layered double hydroxide nanoparticles with pathways for biomedical purposes. Adv Drug Deliv Rev. 2022;188: 114451.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silva Neto LD, Anchieta CG, Duarte JLS, Meili L, Freire JT. Impact of drying on the fabrication of mgal layered double hydroxides. ACS Omega. 2021;6(33):21819–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma U, Tyagi B, Jasra RV. Synthesis and characterization of Mg−Al−CO3 layered double hydroxide for CO2 adsorption. Ind Eng Chem Res. 2008;47(23):9588–95.

    Article 
    CAS 

    Google Scholar
     

  • Liang J, Ma R, Iyi N, Ebina Y, Takada Ok, Sasaki T. Topochemical synthesis, anion alternate, and exfoliation of co−ni layered double hydroxides: a path to positively charged co−ni hydroxide nanosheets with tunable composition. Chem Mater. 2010;22(2):371–8.

    Article 
    CAS 

    Google Scholar
     

  • Phan VHG, Lee E, Maeng JH, Thambi T, Kim BS, Lee D, Lee DS. Pancreatic most cancers remedy utilizing an injectable nanobiohybrid hydrogel. RSC Adv. 2016;6(47):41644–55.

    Article 
    CAS 

    Google Scholar
     

  • Brines M, Cerami A. Rising organic roles for erythropoietin within the nervous system. Nat Rev Neurosci. 2005;6(6):484–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leist M, Ghezzi P, Grasso G, Bianchi R, Villa P, Fratelli M, Savino C, Bianchi M, Nielsen J, Gerwien J, Kallunki P, Larsen AK, Helboe L, Christensen S, Pedersen LO, Nielsen M, Torup L, Sager T, Sfacteria A, Erbayraktar S, Erbayraktar Z, Gokmen N, Yilmaz O, Cerami-Hand C, Xie Q-W, Coleman T, Cerami A, Brines M. Derivatives of erythropoietin which can be tissue protecting however not erythropoietic. Science. 2004;305(5681):239–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghezzi P, Brines M. Erythropoietin as an antiapoptotic, tissue-protective cytokine. Cell Demise Differ. 2004;11(1):S37–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng B, Kong G, Yang C, Ming Y. Erythropoietin and its derivatives: from tissue safety to immune regulation. Cell Demise Dis. 2020;11(2):79.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glassman PM, Villa CH, Marcos-Contreras OA, Hood ED, Walsh LR, Greineder CF, Myerson JW, Shuvaeva T, Puentes L, Brenner JS, Siegel DL, Muzykantov VR. Focused in vivo loading of purple blood cells markedly prolongs nanocarrier circulation. Bioconjug Chem. 2022;33(7):1286–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cazzola M. Ineffective erythropoiesis and its therapy. Blood. 2022;139(16):2460–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujita Y, Doi Y, Hamano T, Hatazaki M, Umayahara Y, Isaka Y, Tsubakihara Y. Low erythropoietin ranges predict sooner renal operate decline in diabetic sufferers with anemia: a potential cohort research. Sci Rep. 2019;9(1):14871.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Portolés J, Martín L, Broseta JJ, Instances A. Anemia in power kidney illness: from pathophysiology and present therapies, to future brokers. Entrance Med. 2021;8: 642296.

    Article 

    Google Scholar
     

  • Koury MJ, Haase VH. Anaemia in kidney illness: harnessing hypoxia responses for remedy. Nat Rev Nephrol. 2015;11(7):394–410.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ng JK-C, Li PK-T. Power kidney illness epidemic: how can we take care of it? Nephrology. 2018;23(S4):116–20.

    Article 
    PubMed 

    Google Scholar
     

  • Jeon I, Oh J, Kwon YK, Yoon SH, Cho JY, Jang IJ, Yu KS, Lee S. Comparability of pharmacokinetic, pharmacodynamic and tolerability profiles of CKD-11101, darbepoetin alfa (NESP(®)) biosimilar, to these of NESP(®) after a single subcutaneous or intravenous administration to wholesome topics. Drug Des Devel Ther. 2021;15:1735–47.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Statler PA, McPherson RJ, Bauer LA, Kellert BA, Juul SE. Pharmacokinetics of high-dose recombinant erythropoietin in plasma and mind of neonatal rats. Pediatr Res. 2007;61(6):671–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao S, Ma JJ, Lu C. Venous thromboembolism threat and erythropoiesis-stimulating brokers for the therapy of cancer-associated anemia: a meta-analysis. Tumour Biol. 2014;35(1):603–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palazzuoli A, Ruocco G, Pellegrini M, De Gori C, Del Castillo G, Giordano N, Nuti R. The function of erythropoietin stimulating brokers in anemic sufferers with coronary heart failure: solved and unresolved questions. Ther Clin Danger Manag. 2014;10:641–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu Ok, Jung Ok-H, Lee S-T, Kim J-H, Kang Ok-M, Kim H-Ok, Lim J-S, Park H-Ok, Kim M, Lee SK, Roh J-Ok. Erythropoietin reduces epileptogenic processes following standing epilepticus. Epilepsia. 2008;49(10):1723–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suresh S, Rajvanshi PK, Noguchi CT. The various sides of erythropoietin physiologic and metabolic response. Entrance Physiol. 2019;10:1534.

    Article 
    PubMed 

    Google Scholar
     

  • Rancken EJ, Metsäranta MPH, Gissler M, Rahkonen LK, Haataja LM. Endogenous erythropoietin at delivery is related to neurodevelopmental morbidity in early childhood. Pediatr Res. 2022;92(1):307–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nie T, Wang W, Liu X, Wang Y, Li Ok, Tune X, Zhang J, Yu L, He Z. Sustained launch techniques for supply of therapeutic peptide/protein. Biomacromol. 2021;22(6):2299–324.

    Article 
    CAS 

    Google Scholar
     

  • Hahn SK, Oh EJ, Miyamoto H, Shimobouji T. Sustained launch formulation of erythropoietin utilizing hyaluronic acid hydrogels crosslinked by Michael addition. Int J Pharm. 2006;322(1):44–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geng Y, Yuan W, Wu F, Chen J, He M, Jin T. Formulating erythropoietin-loaded sustained-release PLGA microspheres with out protein aggregation. J Management Launch. 2008;130(3):259–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar X, Neuperger E, Dey SK. Insights into the synthesis of layered double hydroxide (LDH) nanoparticles: Half 1 Optimization and managed synthesis of chloride-intercalated. LDH J Colloid Interf Sci. 2015;459:264–72.

    Article 
    CAS 

    Google Scholar
     

  • Solar W, Wu T, Wang L, Dong C, Liu G. managed preparation of MgAl-layered double hydroxide/graphene hybrids and their purposes for metallic safety. Ind Eng Chem Res. 2019;58(36):16516–25.

    Article 
    CAS 

    Google Scholar
     

  • Xu N, Xu J, Zheng X, Hui J. Preparation of injectable composite hydrogels by mixing poloxamers with calcium carbonate-crosslinked sodium alginate. ChemistryOpen. 2020;9(4):451–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mesdaghinia A, Pourpak Z, Naddafi Ok, Nodehi RN, Alizadeh Z, Rezaei S, Mohammadi A, Faraji M. An in vitro methodology to judge hemolysis of human purple blood cells (RBCs) handled by airborne particulate matter (PM10). MethodsX. 2019;6:156–61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smalenskaite A, Vieira DEL, Salak AN, Ferreira MGS, Katelnikovas A, Kareiva A. A comparative research of co-precipitation and sol-gel artificial approaches to manufacture cerium-substituted MgAl layered double hydroxides with luminescence properties. Appl Clay Sci. 2017;143:175–83.

    Article 
    CAS 

    Google Scholar
     

  • Thambi T, Deepagan VG, Yoon HY, Han HS, Kim S-H, Son S, Jo D-G, Ahn C-H, Suh YD, Kim Ok, Chan Kwon I, Lee DS, Park JH. Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug supply. Biomaterials. 2014;35(5):1735–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gil MS, Thambi T, Phan VHG, Kim SH, Lee DS. Injectable hydrogel-incorporated most cancers cell-specific cisplatin releasing nanogels for focused drug supply. J Mater Chem B. 2017;5(34):7140–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phan VHG, Murugesan M, Manivasagan P, Nguyen TL, Phan T-H, Luu CH, Ho D-Ok, Li Y, Kim J, Lee DS, Thambi T. Injectable hydrogel based mostly on protein-polyester microporous community as an implantable area of interest for energetic cell recruitment. Pharmaceutics. 2022;14(4):709.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eltantawy MM, Belokon MA, Belogub EV, Ledovich OI, Skorb EV, Ulasevich SA. Self-assembled liesegang rings of hydroxyapatite for cell culturing. Adv NanoBiomed Res. 2021;1(5):2000048.

    Article 
    CAS 

    Google Scholar
     

  • Kang H, Shu Y, Li Z, Guan B, Peng S, Huang Y, Liu R. An impact of alginate on the steadiness of LDH nanosheets in aqueous resolution and preparation of alginate/LDH nanocomposites. Carbohydr Polym. 2014;100:158–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang H, Shu Y, Li Z, Guan B, Peng S, Huang Y, Liu R. An impact of alginate on the steadiness of LDH nanosheets in aqueous resolution and preparation of alginate/LDH nanocomposites. Carbohyd Polym. 2014;100:158–65.

    Article 
    CAS 

    Google Scholar
     

  • Thambi T, Phan VHG, Lee DS. Stimuli-sensitive injectable hydrogels based mostly on polysaccharides and their biomedical purposes. Macromol Fast Commun. 2016;37(23):1881–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo H, Huang S, Yang X, Wu J, Kirk TB, Xu J, Xu A, Xue W. Injectable and self-healing hydrogels with double-dynamic bond tunable mechanical, gel-sol transition and drug supply properties for selling periodontium regeneration in periodontitis. ACS Appl Mater Interf. 2021;13(51):61638–52.

    Article 
    CAS 

    Google Scholar
     

  • Acharya R, Alsharabasy AM, Saha S, Rahaman SH, Bhattacharjee A, Halder S, Chakraborty M, Chakraborty J. Intercalation of shRNA-plasmid in Mg–Al layered double hydroxide nanoparticles and its mobile internalization for potential therapy of neurodegenerative ailments. J Drug Supply Sci Technol. 2019;52:500–8.

    Article 
    CAS 

    Google Scholar
     

  • Panda HS, Srivastava R, Bahadur D. In-vitro launch kinetics and stability of anticardiovascular drugs-intercalated layered double hydroxide nanohybrids. J Phys Chem B. 2009;113(45):15090–100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Solar Q, Li Q, Kawazoe N, Chen G. Purposeful hydrogels with tunable buildings and properties for tissue engineering purposes. Entrance Chem. 2018. https://doi.org/10.3389/fchem.2018.00499.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan Z, Dini D, Rodriguez F, Baena YAE. Composite hydrogel: a excessive constancy smooth tissue mimic for surgical procedure. Mater Design. 2018;160:886–94.

    Article 
    CAS 

    Google Scholar
     

  • Nasution H, Harahap H, Dalimunthe NF, Ginting MHS, Jaafar M, Tan OOH, Aruan HK, Herfananda AL. Hydrogel and results of crosslinking agent on cellulose-based hydrogels: a overview. Gels. 2022;8(9):568.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bashir S, Hina M, Iqbal J, Rajpar AH, Mujtaba MA, Alghamdi NA, Wageh S, Ramesh Ok, Ramesh S. Basic ideas of hydrogels: synthesis, properties, and their purposes. Polymers. 2020;12(11):2702.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai Y, Zhang Y, Qu Q, Xiong R, Tang H, Huang C. Encapsulated microstructures of useful useful lipids and their purposes in meals and biomedicines. J Agric Meals Chem. 2022;70(27):8165–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel DK, Dutta SD, Shin W-C, Ganguly Ok, Lim Ok-T. Fabrication and characterization of 3D printable nanocellulose-based hydrogels for tissue engineering. RSC Adv. 2021;11(13):7466–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dutta SD, Hexiu J, Patel DK, Ganguly Ok, Lim Ok-T. 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering. Int J Biol Macromol. 2021;167:644–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alonso JM, Andrade Del Olmo J, Perez Gonzalez R, Saez-Martinez V. Injectable hydrogels: from laboratory to industrialization. Polymers. 2021;13(4):650.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han P, Wu C, Xiao Y. The impact of silicate ions on proliferation, osteogenic differentiation and cell signalling pathways (WNT and SHH) of bone marrow stromal cells. Biomater Sci. 2013;1(4):379–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kruppke B, Heinemann C, Wagner A-S, Farack J, Wenisch S, Wiesmann H-P, Hanke T. Strontium ions promote in vitro human bone marrow stromal cell proliferation and differentiation in calcium-lacking media. Dev Development Differ. 2019;61(2):166–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Derkach SR, Voron’ko NG, Kuchina YA. Intermolecular interactions within the formation of polysaccharide-gelatin complexes: a spectroscopic research. Polymers. 2022;14(14):2777.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng Z, Patel J, Lee S-H, McCallum M, Tyagi A, Yan M, Shea KJ. Artificial polymer nanoparticle-polysaccharide interactions: a scientific research. J Am Chem Soc. 2012;134(5):2681–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan W, Jensen LR, Dong Y, Deloria AJ, Xing B, Yu D, Smedskjaer MM. Extremely stretchable swelling-resistant, self-healed, and biocompatible dual-reinforced double polymer community hydrogels. ACS Appl Bio Mater. 2023;6(1):228–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jo H, Kim J, Kim J-W, Kim B, Choi BY, Kang Ok, Ryu J, Kim MS. Security evaluation of a three-dimensional-printed autologous omentum patch: an utility on the kidneys as a brand new therapy method. Scientific Trans Sci. 2023. https://doi.org/10.1111/cts.13528.

    Article 

    Google Scholar
     

  • Jo H, Choi BY, Jang G, Lee JP, Cho A, Kim B, Park JH, Lee J, Kim YH, Ryu J. Three-dimensional bio-printed autologous omentum patch ameliorates unilateral ureteral obstruction-induced renal fibrosis. Tissue Eng Half C Strategies. 2022;28(12):672–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ibanez RIR, do Amaral RJFC, Simpson CR, Casey SM, Reis RL, Marques AP, Murphy CM, O’Brien FJ. 3D Printed scaffolds included with platelet-rich plasma present enhanced angiogenic potential whereas not inducing fibrosis. Adv Funct Mater. 2022;32(10):2109915.

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments